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Abstract

Natural computing deals with the extraction of mathematical models of compu-

tation from nature, investigating their theoretical properties, and identifying the

extent of their real-world applications. P systems (also called membrane systems)

were introduced as parallel computational models inspired by the hierarchical struc-

ture of membranes in living organisms and the biological processes which take place

in and between cells.

Spiking neural P systems (for short, SN P systems) are a class of P systems inspi-

red by the spiking activity of neurons in the brain. An SN P system is represented as

a directed graph where nodes correspond to the neurons having spiking and forget-

ting rules. The rules involve the spikes present in the neuron in the form of occur-

rences of a symbol a. It is a versatile formal model of computation that can be used

for designing efficient parallel algorithms for solving known computer science pro-

blems. SN P systems are used as a computing device in various ways - generators,

acceptors, and transducers.

SN P system with anti-spikes (for short, SN PA systems) is a variant of SN P sys-

tem containing two types of objects, spikes (denoted by a) and anti-spikes (denoted

by a), corresponding somewhat to inhibitory impulses from neurobiology. Because

of the use of two types of objects, the system can encode the binary digits in a na-

tural way and hence can represent the formal models more efficiently and naturally

than the SN P systems.

The thesis investigates the computing power of spiking neural P system with

anti-spikes as language generators and transducers. We show that SN PA systems

as generators can generate languages that cannot be generated by the standard SN

P systems. It is demonstrated that, as transducers, spiking neural P systems with

anti-spikes can simulate any Boolean circuit and computing devices such as finite

automata and finite transducers. We also investigate how the use of anti-spikes in

spiking neural P systems affect the capability to solve the satisfiability problem in a

non-deterministic way.
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For efficient formalization and to deal with the implementation and formal cor-

rectness of SN P systems, this thesis also shows the structural link between SN P sys-

tems and Petri nets. A major strength of Petri nets is their support for analysis of

many properties and problems associated with parallel systems. Petri nets working

in sequential or parallel mode are also used as language generators.

The SN P system works in a locally sequential and globally maximal way. That

is, each neuron, at each step, if more than one rule is enabled, then only one of

them can fire. But still, all neurons fire in parallel at the system level. This makes it

suitable for a natural translation to Petri net with parallel semantics. In general for

arbitrary classes of P systems using maximal parallelism, translations to Petri nets

are only possible through special semantics associated with them. In this thesis we

are interested in those interactions investigating the role of Petri nets as a tool to

express behavioural semantics for SN P systems.

The thesis proposes a direct translation of standard SN P systems, SN P systems

with anti-spikes and extended SN P systems into Petri net models that exactly mimic

the working of the systems on simulation. The Petri net models obtained after trans-

lation are considered for simulation using PNetLab. PNetLab is a Java based Petri net

tool which supports the parallel execution of transitions. It also allows to write user

defined guard functions in C/C++, which makes it possible to represent the regular

expressions associated with spiking/forgetting rules. It also provides step-by-step

system watching for collecting simulation reports.

We relate the languages generated by the SN P systems with the step languages

generated by the corresponding Petri nets. We emphasize the relationship between

spiking neural P systems and Petri nets by constructing SN P systems for simplex

stop-and-wait protocol and producer/consumer paradigm. They are translated into

equivalent Petri net models, which are observed as standard solutions based on Petri

nets already present in the literature. It is attractive to adopt Petri nets to model SN

P systems so the rich theoretical concepts and practical tools from well-developed

Petri nets could be introduced in the current research of SN P systems.
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Chapter 1

Introduction

The thesis relates two important mathematical models: spiking neural P systems

and Petri nets. In this chapter first we give a short informal survey of the assorted

computing models of natural computing, especially spiking neural P systems. We

also briefly mention the historical development of Petri nets and the relation bet-

ween the P systems and Petri nets. We also discuss the motivation and the contribu-

tion of this thesis. Finally, we describe the organization of the thesis and the topics

of each chapter.

1.1 Background

Natural computing uses nature as a source of inspiration or metaphor for the de-

velopment of new techniques for solving complex computational and engineering

problems. Biologically inspired computing and computing with natural means are

the important branches of natural computing. Biologically inspired computing in-

volves the study of biological phenomena, processes and even theoretical models

for the development of computational systems and algorithms capable of solving
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Chapter 1. Introduction

complex problems. Research in this field includes artificial neural networks, inspi-

red by the functioning of the mammalian brain [64], evolutionary algorithms moti-

vated by evolutionary biology [10], swarm intelligence, based on the collective beha-

viour of social organisms.

Computing with natural means is the approach that brings the most radical

change in the paradigm. This field is motivated by the need to identify alternative

media for computing. Researches are now trying to design new computers based

on molecules, such as membranes, DNA and RNA, or quantum theory. The idea

resulted in what is now known as molecular computing [4] and quantum computing

[96] respectively.

Molecular computing is based upon the use of biological molecules to store

information and genetic engineering techniques for the design of new computers.

The field of DNA based computation [36, 86] laid the foundation towards molecu-

lar computing. The major idea of DNA computing is to take advantage of the huge

parallelism provided by the biochemical processes occurring in a DNA solution.

Membrane Computing which is another branch of molecular computing ini-

tiated by Gh. Paun [28], provides distributed, parallel, and non-deterministic com-

puting models known as P systems. These models are basically abstractions of the

compartmentalized structure and parallel processing of biochemical information in

biological cells. Membrane computing proved to be a fruitful framework for appli-

cations in several areas, especially in biology and bio-medicine [21]. Many P system

variants have been defined in literature and many of them have been proven to be

computationally complete. Moreover, several general classifications of P systems

are considered depending on the level of abstraction: cell-like (a rooted tree where

the skin or outermost cell membrane is the root, and its inner membranes are the

children or leaf nodes in the tree), tissue-like (a graph connecting the cell mem-

branes) [71], and neural-like (a directed graph, inspired by neurons interconnected

by their axons and synapses).

2



Chapter 1. Introduction

Spiking neural P systems were introduced in [50] with the aim of defining com-

puting models based on ideas specific to spiking neurons, currently much inves-

tigated in neural computing. The resulting models are a variant of tissue-like and

neural-like P systems from membrane computing (see [30] and the up-to-date in-

formation at the web site [2]), with very specific ingredients and way of functioning.

In short, a standard SN P system consists of a set of neurons (cells, consisting

of only one membrane) placed in the nodes of a graph and sending signals (spikes,

denoted in what follows by the symbol a) along synapses (edges of the graph). Thus,

the architecture is that of a tissue-like P system, with only one kind of object present

in the cells.

One key reason of interest for P systems is that they are able to solve computa-

tionally hard problems (e.g. NP-complete problems) usually in polynomial to linear

time only, but requiring exponential space as trade off. These solutions are inspi-

red by the capability of cells to produce an exponential number of new membranes

via methods like mitosis (membrane division) or autopoiesis (membrane creation).

The website of the domain, at http://ppage.psystems.eu/, provides a comprehensive

information in this respect.

It is usually a complex task to predict or to guess how a P system will behave.

Moreover, as there do not exist, up to now, implementations in laboratories (neither

in vitro nor in vivo nor in any electronic media), it seems natural to look for software

tools that can be used as assistants that are able to simulate computations of P sys-

tems. The first software simulator for P systems appeared in the year 2000. It was

written by Mihaela Malita [69] in LPA-Prolog and, since then, many software simu-

lators have been presented (see [40] and references therein). Furthermore, software

tools, such as P-Lingua [26], for simulating P systems, have been developed and used

in real life problems. Their common purpose is the better understanding of the com-

putational process of P systems, for pedagogical purposes as well as assistance for

researchers.

3



Chapter 1. Introduction

The modelling and analysis of P systems has also attracted considerable inter-

est from the Petri net community [55–60, 89]. A deeper investigation of the relation-

ship between these two formalisms is interesting, providing valuable cross fertili-

zation of these research areas. Membrane computing deals with the computatio-

nal properties, making use of automata, formal languages, and complexity results.

The formal model of Petri nets is a generalisation of automata theory such that the

concept of concurrently occurring events can be expressed in a simple but powerful

framework. The semantics of Petri nets is mathematically defined, and Petri nets

have the advantage of being executable. Petri nets are also used as language genera-

tors [41].

Petri nets were first introduced in the early 1960s by Carl Adam Petri in his Ph.D.

dissertation [85]. Since that time, Petri nets have been accepted as a powerful formal

specification tool for a variety of systems including concurrent, distributed, asyn-

chronous, parallel, deterministic, and non-deterministic systems. An article by Mu-

rata [76] contains a good introduction to general Petri net theory. Additionally, there

exist a number of introductory articles and books on Petri nets [92]. For general ac-

cess to information on Petri nets, see the Petri nets home-page http://www.informatik.uni-

hamburg.de/TGI/PetriNets/.

It is well-known that the computational power of Petri nets is strictly weaker

than that of Turing machines, making them inadequate for modelling certain real-

world systems such as prioritized systems [5]. To overcome this shortcoming, a

number of extended Petri nets have been introduced to enhance the expressive ca-

pabilities of Petri nets. Among them are coloured Petri nets [54], Petri nets with

inhibitor arcs, timed Petri nets [90, 95], prioritized Petri nets, and more. Extended

Petri nets are powerful enough to simulate Turing machines.

In our thesis we propose to use Petri nets as a tool to simulate, verify, and ana-

lyse different variants of SN P systems. Petri nets offer significant advantages be-

cause of their twofold representation: graphical and mathematical. They can be as

4



Chapter 1. Introduction

well a model of parallelism, where the simultaneity of the events is more important,

when we consider their step sequence semantics in which an execution is repre-

sented by a sequence of steps each of them being the simultaneous occurrences of

transitions [62, 87].

1.2 Motivation

It is obvious that the chemical, electrical, and informational processes taking place

in the brain are the major source of inspiration for informatics. Risking a forecast,

we believe that if something great is to appear in informatics in the near future,

then it will be inspired by the brain. Spiking neural P systems are not the answer

to this learning-from-brain challenge, but only to call (once again) the attention to

this challenge. Becoming familiar with brain functioning, in whatever reductionistic

framework (as spiking neural P systems investigation is), can however be useful.

Membrane computing is now an area of intense research related to applica-

tions, mainly in biology/medicine, but also in economics, distributed evolutionary

computing, computer graphics, etc. [21], but this happens after a couple of years

of research of a classic language-automata-complexity type; maybe this will be the

case also for the spiking neural P systems, which need further theoretical investiga-

tion before passing to applications.

As SN P systems are recently introduced computational models, there are only

a few software tools available to analyse their behaviour. In [39], a tool for simula-

ting simple and extended SN P system is introduced that yields only the transition

diagram showing the reachable configurations for the SN P system and it lacks gra-

phical step-by-step simulation of the system.
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Petri nets provide a promising way to verify system properties, system sound-

ness and to simulate the dynamic behaviour of the SN P systems because of their pa-

rallel execution semantics, appropriateness to represent typical working processes

and the availability of Petri net tools to simulate these systems. This was the driving

force to motivate our research in this field.

While relating the languages associated with different variants of SN P systems

and the corresponding Petri nets, the computational efficiency of different variants

of SN P systems are explored. The power of different variants of SN P systems as

language generators are investigated in [18, 19]. It was shown in [18] that some finite

languages cannot be generated using simple SN P systems but it was proved in [19]

that SN P systems with extended rules can generate the finite languages.

Standard spiking neural P systems are used to simulate arithmetic and logic

operations where the presence of spike is encoded as 1 and absence of spike as 0

[73]. The negative integers however, are not considered. In transducer mode, they

are used to simulate the Boolean circuits [52], with two spikes sent out of the system

encoded as 1 and one spike as 0. In [66], a uniform solution to the SAT (in CNF, with

n variables and m clauses) is provided using standard SN P systems without delay

having 3n2 + 8m + 5 neurons, providing the solution in a number of steps which is

linear in the number of variables. Two bits were used to code each literal of a clause,

hence the computation cannot end in less than 2n steps.

The SN P systems with anti-spikes can encode 1 by a spike and 0 by an anti-

spike in more natural and efficient way than standard SN P systems, which moti-

vated us to study the computability of SN PA systems as language generators and

transducers.
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1.3 Contribution of the Thesis

In this thesis we design algorithms to translate standard SN P systems, SN P systems

with anti-spikes and extended SN P systems into Petri net models. We simulate the

obtained Petri net models through the Java based Petri net tool called PNetLab and

analyse the SN P systems using simulation results. We also relate the languages ge-

nerated by these variants of SN P systems and the corresponding Petri net models.

The main contribution of the work presented is its potential for further develop-

ment and exploitation of this structural link between SN P systems and Petri nets.

For SN P systems this means that results, techniques and tools from the Petri net

world become available, like linear algebra techniques (invariants) and coverability

and reachability analysis including decidability results and verification techniques

(model checking). Tools and techniques developed for Petri nets can be used for the

description, analysis, and verification of behavioural properties of SN P system.

We also study the computational and generative power of spiking neural P sys-

tems with anti-spikes. We show that the idea of encoding 1 as spike and 0 as anti-

spike proves to be very efficient in simulating Boolean circuits, finite state transdu-

cers, and solving NP-complete problems. We design SN PA systems simulating the

operations of different Boolean gates. We also design SN P systems with anti-spikes

to perform arithmetic operations like 2’s complement, addition, and subtraction.

The advantage of using this variant of SN P system is that we can perform the ope-

rations on negative numbers also. We show that any instance of SAT in conjunctive

normal form, with n variables and m clauses is solved in a more efficient way using

SN PA system.
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1.4 An Overview of the Thesis

The thesis investigates the structural link between SN P systems and Petri nets by

introducing algorithms to translate different variants of SN P systems into Petri nets.

Thesis is organized as follows.

Chapter 2 gives mathematical definitions, notions, notations of formal lan-

guages and automata theory. It introduces P systems by presenting the definition

of the basic model of P systems and by briefly describing some of the extensions of

this model which can be found in the existing literature. It also presents prelimina-

ries of SN P systems: description of different variants of SN P systems, computing

with SN P systems, and the important properties of SN P systems. It illustrates the

basic features of Petri nets with its languages. We conclude this chapter with a brief

description of the Petri net tool called PNetLab.

In Chapter 3 we investigate the language generative power of SN PA systems.

It is shown that SN PA systems can generate languages that cannot be generated by

SN P systems. We also study the power of SN PA systems as transducers. Boolean

circuits and arithmetic operations have been simulated in this framework. At the

end of the chapter we present a non-deterministic solution to SAT problem using

SN PA systems.

We pass to the next major topic of the thesis in Chapter 4. The definition of Petri

net with guard function which will be used in our translation is given. We show the

similarities between SN P systems and Petri nets. We give a generalized algorithm to

translate standard SN P systems into Petri nets. Some SN P systems are translated

into Petri nets by using the algorithm. The obtained Petri net models are simulated

using Java based Petri net tool called PNetLab. The simulation results are analysed.

The results show that Petri net is an efficient tool to simulate, verify, and analyse the

SN P systems. The language generated by the SN P systems are related with the step

languages of the corresponding Petri nets.
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In Chapter 5 we translate SN P systems with anti-spikes into Petri nets. The

annihilation rule aa → λ that is implicitly present in each neuron of SN PA system

is mapped to a pair of transitions. To simulate the execution of SN PA systems, each

transition of the SN PA system is mapped to two consecutive steps of the Petri net.

Again the SN PA systems are analysed using PNetLab. The language generated by

the SN PA systems are also related with the step languages of the corresponding Petri

nets.

In Chapter 6 the relationship between the SN P systems and Petri nets is em-

phasized by modelling the simplex stop-and-wait protocol and producer/consumer

problem using SN P systems. The models are translated into Petri nets using the al-

gorithm proposed in Chapter 4. It is observed that there is a direct correspondence

between the Petri net representation of the proposed models and standard solutions

based on Petri nets already present in the literature.

Finally, in Chapter 7 we draw some general conclusions and present sugges-

tions for further research.
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Chapter 2

Preliminaries

In this chapter we recall some basic concepts of formal language theory, P systems,

and Petri nets, to the extent needed for describing the work presented in the thesis.

Further information on these topics can be found in [37, 41, 43, 44, 54, 74, 93, 94].

2.1 Alphabets and Languages

An alphabet V is a finite nonempty set of symbols. The cardinality of the set V is

denoted by card(V ). A string (or word) x over V is a sequence of symbols drawn

from V . λ (or ǫ) denotes the empty string.

For an alphabet V , we denote by V ∗ (it is the set of all strings of symbols from V)

the free monoid generated by V under the operation of concatenation. V + denotes

the set of nonempty strings. i.e. V ∗ − {λ}.

Given a string x ∈ V ∗ such that x = x1x2, for some x1, x2 ∈ V ∗, then x1, x2 are

respectively called a prefix and a suffix of x. If x = x1x2x3, for some x1, x2, x3 ∈ V ∗,

then x2 is called a substring of x.

Any set of strings over an alphabet V , i.e., any subset of V ∗, is called a language.
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A language which does not contain the empty string is said to be λ-free. The usual

set operations can be naturally extended to languages, as well as several operations

which are specific for strings and sets of strings.

If L1 and L2 are two languages over V , then

• Union of L1 and L2 is the language that contains all strings that are either in L1

or L2.

L1 ∪ L2= {x | x ∈ L1 or x ∈ L2}.

• Intersection of L1 and L2 is the language that contains all strings that are both

in L1 and L2.

L1 ∩ L2= {x | x ∈ L1 and x ∈ L2}.

• Difference of L1 and L2 is the language of all strings that are in L1 and not in L2.

L1\L2= {x | x ∈ L1 and x /∈ L2}.

When a particular alphabet V is understood from context, we shall write L -

the complement of L - instead of the difference V ∗\L.

• Complement of a language L the set of all strings in V ∗ that are not in L

L={x | x ∈ V ∗ and x /∈ L}.

• Concatenation of L1 and L2 is the language of all strings formed by concatena-

ting a string from L1 with a string from L2.

L1L2= {xy | x ∈ L1 and y ∈ L2}.

Lk means the set of all strings that can be obtained by concatenating k ele-

ments of L. i.e. Lk=k times concatenation of L.

• Kleene star of a language L, denoted by L∗ is the set of all strings obtained by

concatenating zero or more strings from L.

That is L∗=L0 ∪ L1 ∪ L2 ∪ L3 ∪ · · · .

L∗=
⋃∞

i=0 L
i, where

L0={λ},
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L1 = L,

L2=LL,

Lk=Lk−1L, and so on.

Positive closure of L is denoted as L+ and is set of all strings obtained by conca-

tenating one or more strings from L. So L+ = LL∗=
⋃∞

i=1 L
i.

The length of a string x ∈ V ∗ is denoted by |x| and |x|a is the number of oc-

currences of the symbol a ∈ V in the string x. For a language L ⊆ V ∗, the set

length(L) = {|x| | x ∈ L} is called the length set of L. If FL is a family of languages.

we denote by NFL the family of length sets of languages in FL.

A language L ⊆ V ∗ is said to be regular if there is a regular expression E over V

such that L(E) = L. Let L(E) be the language that regular expression E represents.

A recursive definition for E (and L(E)) is given below:

• Basis: λ and ∅ are regular expressions, and L(λ) = {λ} and L(∅) = ∅. For any

a ∈ V , a is a regular expression and L(a) = {a}.

• Induction: If E1 and E2 are regular expressions, then E1 + E2 is a regular ex-

pression, with L(E1 + E2) = L(E1) ∪ L(E2), and E1E2 is a regular expression,

with L(E1E2) = L(E1)L(E2). If E is a regular expression, then E∗ is a regu-

lar expression, with L(E∗) = (L(E))∗, and (E) is a regular expression, with

L((E)) = L(E).

When V = {a} is a singleton set, then the regular expression a∗ denotes the set of all

strings formed using a. i.e the set {λ, a, a2, a3, .........} and a+ = aa∗.

For V = {a1, a2, . . . , an} and x ∈ V ∗, the Parikh vector associated with word x

with respect to alphabet V is defined as ΨV (x) = 〈|x|a1 , |x|a2, . . . , |x|an〉. The Parikh

set of a language L ⊆ V ∗ is ΨV (L) = {ΨV (x) | x ∈ L}. If V is a singleton set then

ΨV (L) = {|x| | x ∈ L}.
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The set of non negative integers and natural numbers are denoted by N and

N
+ respectively. A set Q of vectors in N

+n, for some n ≥ 1, is said to be linear if

there are some vectors v1, v2, . . . , vm ∈ N
+n, m ≥ 0, such that Q = {v0 +

∑m
i=1 αivi |

αi, α2, . . . , αn ∈ N
+}. A finite union of linear sets is a semilinear set. A language

L ⊆ V ∗ is semilinear if its Parikh image ΨV (L) is a semilinear set.

A multiset over a set V is a function M : V → {0, 1, 2, . . .}. For each a ∈ V ,

M(a) is the number of copies of a in the multiset M . The cardinality of M is |M | =
∑

a∈V M(a). For two multisets M1 and M2 over V , the sum M1 + M2 is the multiset

given by the formula (M1 +M2)(a) = M1(a) +M2(a) for all a ∈ V , and if k ∈ N
+ then

k.M1 is the multiset given by (k.M1)(x) = k.M1(a) for all a ∈ V . We denote M2 ≤ M1

whenever M2(a) ≤ M1(a) for all a ∈ V , and if M2 ≤ M1, then the difference M1 −M2

is M1(a)−M2(a) for all a ∈ V . The empty multiset is denoted by λ.

A multiset over V can be naturally represented as a string of elements from V .

For instance a string x = aaaaa denotes a multiset M over V = {a, a} with M(a) = 3,

and M(a) = 2. Clearly all permutations of the string x represent same multiset M .

With P (V ∗) we denote the set of families of languages over an alphabet V . If we

consider two alphabets U and V , a mapping h : V → P (U∗), extended to h : V ∗ →

P (U∗) by h(λ) = λ and h(x1x2) = h(x1)h(x2), for x1, x2 ∈ V ∗, is called a substitution.

For a language L ∈ V ∗, we have h(L) =
⋃

x∈L h(x).

If the set h(a) is finite for each a ∈ V , then h is called a finite substitution; if

card(h(a)) = 1, then h is called a morphism.

If λ /∈ h(a), for each a ∈ V , then h is said to be a λ-free substitution (or λ-free

morphism). For a morphism h : V ∗ → U∗, the inverse morphism can be obtained

defining a mapping h−1 : U∗ → P (V ∗) by h−1(y) = {x ∈ V ∗ | h(x) = y}.

A morphism h : V ∗ → U∗ is called a coding if h(a) ∈ U for all a ∈ V , it is called a

weak coding if h(a) ∈ U ∪ {λ} for each a ∈ V .
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The mappings defined on strings are extended to languages in the natural way,

for instance if h : V ∗ → U∗ is a morphism and L ⊆ V ∗ then h(L) = {h(x) | x ∈ L}.

2.2 Automata

An automaton is an abstract model of a digital computer. It has a mechanism for

reading input. It is assumed that the input is a string over a given alphabet, written

on an input tape, which the automaton can read but not change. The input tape is

divided into cells, each of which can hold one symbol. The input mechanism can

read the input tape left to right, one symbol at a time. It can also detect the end of

the input string. The automaton can produce output of some form. It may have

a temporary storage device which consists of an unlimited number of cells, each

capable of holding a single symbol from an alphabet (not necessarily the same one

as the input alphabet). The automaton can read and change the contents of the

storage cells. Finally, the automaton has a control unit which can be any one of a

finite number of states.

An automaton is assumed to operate in a discrete time frame. At any given time,

the control unit is in some state and the input mechanism is scanning a particular

symbol on the input tape. The state of the control at the next time step is determined

by a transition function. A transition function gives the next state in terms of the

current state, the current input symbol, and the information currently available in

the temporary storage. During a transition from one time interval to another, output

may be produced or the information in the temporary storage may be changed.

An automaton whose output response is limited to a simple yes or no is called

an acceptor or recognizer. A more general automaton, capable of producing strings

of symbols as output is called a transducer.

Based on the nature of the temporary storage, we have three types of automata,
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namely, finite automata, pushdown automata, and Turing machines. Here we only

discuss about finite automata and Turing machines.

2.2.1 Finite Automata

Finite automata is characterized by having no temporary storage. So, a finite amount

of information can be retained in the control unit by placing the unit into specific

state. Since the number of such states is finite, a finite automaton can only deal with

situations in which the information to be stored at any time is strictly bounded.

Definition 2.1 (Finite Automaton). A finite automaton is a construct

M = (Q, V, δ, q0, F ),

where Q and V are disjoint alphabets, q0 ∈ Q, F ⊂ Q, and δ : Q× (V ∪ λ) → 2Q; Q is

a finite set of states, V is a finite set of input alphabet, q0 is an initial state, F is a set of

final states, and δ is a transition function.

If card(δ(q, a)) ≤ 1 for all q ∈ Q, and a ∈ V , we say that the automaton is deter-

ministic.

We can extend the definition of a transition function from δ to δ∗ as follows:

δ∗ : Q× V ∗ → 2Q,

δ∗(q, λ) = {q},

δ∗(q, xa) = {p | for some state r in δ∗(q, x), p is in δ(r, a)},

where q ∈ Q, x ∈ V ∗, and a ∈ V .

The language accepted by a finite automaton M is defined as

L(M) = {w ∈ V ∗ | δ∗(q0, w) ∈ F}.
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It is known that both deterministic and nondeterministic finite automata cha-

racterize the same family of languages, namely, the family of regular languages.

A deterministic transducer M ′ = (Q, V,∆, δ, µ, q0, F ) is defined as a finite au-

tomaton with output associated with its moves. The components Q, V, δ, q0, F are

same as in deterministic finite automaton, ∆ is the output alphabet and µ is the

output function that maps Q× V → ∆, i.e. a symbol is also produced when reading

a symbol in the input string.

2.2.2 Turing Machines

Turing machine is characterized by having a single, one-dimensional array of cells,

each of which can hold a single symbol. This array extends indefinitely in both di-

rections and is therefore capable of holding an unlimited amount of information.

The information can be read and changed in any order. We call such a storage de-

vice a tape. Associated with the tape is a read-write head that can move right or left

on the tape. On each move, the read-write head can read and write a single symbol

on the tape.

Definition 2.2 (Turing Machine). A Turing machine M is a construct

M = (Q, V,Γ, δ, q0,�, F ),

where Q, V , and Γ are disjoint alphabet, q0 ∈ Q, � ∈ Γ, F ⊆ Q, and δ : Q × Γ →

2Q×Γ×{L,R}; Q is a finite set of states, V is a finite set of input alphabet, Γ is finite set of

tape alphabet, q0 is an initial state, � is a blank symbol, F is a set of finite states, and

δ is a transition function.

We assume that V ⊆ Γ − {�}. If (p, b,D) ∈ δ(q, a) for q, p ∈ Q, a, b ∈ Γ, and

D ∈ {L,R}, the machine reads a symbol a in a state q and passes to a state p, replaces

the symbol a with a symbol b and then moves the read-write head with respect to D.
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To exhibit the configuration of a Turing machine, we use the idea of an instanta-

neous description. Any configuration is completely determined by the current state

of the control unit, the contents of the tape, and the position of the read-write head.

We use the notation in which x1qx2 is the instantaneous description of a machine

in state q with x1 as the tape content on the left side of the read-write head and x2

as the tape content on the right side of the read-write head. The read-write head is

reading the first symbol of x2.

A move from one configuration to another is defined by ⊢, Thus,

x1qax2 ⊢M x1bpx2 iff (p, b, R) ∈ δ(q, a);

x1cqax2 ⊢M x1pcbx2 iff (p, b, L) ∈ δ(q, a);

x1q� ⊢M x1ap iff (p, a, R) ∈ δ(q,�);

x1bq� ⊢M x1pba iff (p, a, L) ∈ δ(q,�);

where x1, x2 ∈ (Γ− {�})∗; a, b, c ∈ Γ, and q, p ∈ Q.

Always the automaton starts in the given initial state with some information on

the tape. It then goes through a sequence of steps controlled by the transition func-

tion δ. During this process, the contents of any cell on the tape may be examined

and changed many times. Eventually, the whole process may terminate, which we

achieve in a Turing machine by putting it into a halt state. A Turing machine is said

to halt whenever it reaches a configuration for which δ is not defined. But we as-

sume that no transitions are defined for any final state, so a Turing machine will halt

whenever it enters a final state.

The language of strings accepted by a Turing machine M is defined as

L(M) = {w ∈ V ∗ | q0w
∗

⊢M x1qfx2 for some qf ∈ F , and x1, x2 ∈ Γ∗}.

When w is not in L(M), one of two things can happen; the machine can halt in

a non-final state or it can enter an infinite loop and never halt.
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A deterministic Turing machine is an automaton for which card(δ(q, a)) ≤ 1 for

all q ∈ Q and a ∈ Γ.

The class of deterministic Turing machines are equivalent to the class of non-

deterministic Turing machines and the family of languages accepted is exactly the

family of recursively enumerable languages. The family of Turing computable sets of

numbers is denoted by NRE (these sets are length sets of RE languages, hence the

notation).

We can use Turing machines not only as language acceptors but also as trans-

ducers. The string of non-blank symbols present on the tape at the initial configura-

tion is called the input. The string of non-blank symbols present on the tape at the

end of the computation is called the output. Thus, we can view a Turing machine as

a transducer M implementing a function f defined by

w′ = f(w),

provided that

q0w
∗

⊢M w1qfw2, where w′ = w1w2, for some final state qf .

A function f : V ∗ → Γ∗ is said to be computable, if there exists some Turing

machine M = (Q, V,Γ, δ, q0,�, F ) such that starting with w as the non-blank portion

on the input tape, we end up in f(w) as the non-blank portion at the end of the

computation.

Definition 2.3 (Universal Turing Machine). A universal Turing machine Mu is an

automaton that, given as input the description of any Turing machine M and a string

w, can simulate the computation of M on w.

A computer is a programmable machine, able to execute any program it re-

ceives. The computing power of Turing machines can be known from the well known

Church-Turing thesis.
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Church-Turing Thesis: Any computation that can be carried out by mechanical

means can be performed by some Turing machine.

2.3 Chomsky Grammars

A grammar is a device which generates all the strings of a language. To formally

define a grammar, we start from the notion of rewriting systems, which is a pair γ =

(V, P ), where V is an alphabet and P is a set of productions or rewriting rules, and

usually they are written in the form u → v. For x, y ∈ V ∗, we write

x ⇒γ y iff x = x1ux2 and y = x1vx2, for some x1, x2 ∈ V ∗, and u → v ∈ P .

When γ is understood we write ⇒ instead of ⇒γ. The reflexive transitive closure

of ⇒ is denoted by
∗
⇒.

Definition 2.4 (Chomsky Grammar). A Chomsky grammar is a quadrupleG = (N, T, S, P ),

where N and T are disjoint alphabets, S ∈ N , and P is a finite subset of (N∪T )∗N(N∪

T )∗ × (N ∪ T )∗; N is a finite set of non-terminal alphabet, T is finite set of terminal

alphabet, S is the start symbol (or axiom), and P is a finite set of rules of G. The rules

of P are written in the form u → v with |u|N ≥ 1.

The language generated by G is defined as

L(G) = {x ∈ T ∗ | S
∗
⇒ x}.

In other words, L(G) consists of all the string of terminal symbols which can be deri-

ved from the axiom S. Each string w ∈ (N ∪T )∗ such that S
∗
⇒ w is called a sentential

form.

Two grammars G1 and G2 are said to be equivalent, if L(G1)−{λ} = L(G2)−{λ}.

Generally, we consider two grammars equivalent if they generate the same lan-

guage when we ignore the empty string.
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According to the form of their rules, Chomsky grammars are classified as fol-

lows.

A grammar G = (N, T, S, P ) is called

• length-increasing, if for all u → v ∈ P we have |u| ≤ |v|;

• context-sensitive, if each u → v ∈ P has u = u1Au2 and v = u1xu2, for u1 and

u2 ∈ (N ∪ T )∗, A ∈ N , and x ∈ (N ∪ T )+; (In length-increasing and context-

sensitive grammars the rule S → λ is allowed, provided S does not appear in

the right-hand members of rules in P .)

• context-free, if each rule u → v ∈ P has u ∈ N ;

• linear, if each rule u → v ∈ P has u ∈ N and v ∈ T ∗ ∪ T ∗NT ∗;

• right-linear, if each rule u → v ∈ P has u ∈ N and v ∈ T ∗ ∪ T ∗N ;

• left-linear, if each rule u → v ∈ P has u ∈ N and v ∈ T ∗ ∪NT ∗;

• regular, if each rule u → v ∈ P has u ∈ N and v ∈ T ∪ TN ∪ {λ}.

The arbitrary, length-increasing, context-free, and regular grammars are also called

type 0, type 1, type 2, and type 3 grammars, respectively.

The family of languages generated by length-increasing is equal to the family of

languages generated by context-sensitive grammars; the family of languages gene-

rated right- or by left-linear grammars coincide and they are equal to the family of

languages generated by regular grammars.

We denote by REG, LIN , SLIN , CF , CS, and RE (recursively enumerable) the

families of languages generated by regular, linear, semilinear, context-free, context-

sensitive, and arbitrary grammars, respectively. We denote by FIN the family of

finite languages. SLIN does not belong to Chomsky hierarchy. It is the family of

languages whose Parikh mapping is semilinear.
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By NFIN , NSLIN , NRE we denote the families of finite, semilinear, and Tu-

ring computable sets of (positive) natural numbers (number 0 is ignored); they cor-

respond to the length sets of finite, semilinear, and recursively enumerable lan-

guages, whose families are denoted by FIN , SLIN , RE.

Following theorem gives the relationship between different families of languages:

Theorem 2.1. Chomsky hierarchy: FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

The importance of the role of Chomsky hierarchy is owing to several reasons:

the family of RE languages generated by type-0 Chomsky grammars is exactly the

family of languages which are recognized by Turing machines, and according to the

Turing-Church thesis this is the maximal level of algorithmic computability; the

Chomsky hierarchy is well structured, hence we have a detailed classification of

computing machineries.

We denote by BFIN , BREG, BCF , BCS, BRE the families of finite, regular,

context-free, context-sensitive, and recursively enumerable languages over the bi-

nary alphabet B = {0, 1}.

Example 2.1. A list of languages in the Chomsky hierarchy:

L1 = {0m1n | m,n ≥ 1} ∈ REG;

L2 = {0n1n | n ≥ 1} ∈ CF\REG;

L3 = {0n1n0n | n ≥ 1} ∈ CS\CF ;

L4 = {02
n

| n ≥ 1} ∈ CS\CF

Normal Forms

We present here three classical normal-form theorems for grammars. The first two

theorems concern context free grammars, while the third one is a normal form for

type-0 grammars.
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Theorem 2.2 (Chomsky Normal Form). Any λ-free context-free language can be ge-

nerated by a grammar in which all productions are of the form A → BC or A → a,

where A, B and C are non-terminal symbols, and a is a terminal symbol.

Theorem 2.3 (Greibach Normal Form). Any λ-free context-free language can be ge-

nerated by a grammar in which all productions are of the form A → aα, where A is

a non-terminal symbol, a is a terminal symbol, and α is a (possibly empty) string of

non-terminal symbols.

Theorem 2.4 (Kuroda Normal Form). Any type-0 Chomsky grammar can be genera-

ted by a grammar in which all productions are context-free rewriting rules, or they are

of the form AB → CD, where A, B, C, and D are non-terminal symbols.

2.4 Register Machines

A very useful characterization of NRE (the family of sets of numbers which are Tu-

ring computable) is obtained from register machines (also called counter machines,

program machines) [74].

A non-deterministic register machine is a construct M = (m,H, l0, lh, I); where

m is the number of registers, H is the set of instruction labels, l0 is the start label

(labelling an ADD instruction), lh is the halt label (assigned to instruction HALT ),

and I is the set of instructions; each label from H labels only one instruction from I ,

thus precisely identifying it. The instructions are of the following forms:

• li : (ADD(r), lj, lk) (add 1 to register r and then go to one of the instructions

with labels lj,lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to

the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).
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A register machine M generates a set N(M) of numbers in the following way: we

start with all registers empty (i.e., storing the number zero), we apply the instruction

with label l0 and we continue to apply instructions as indicated by the labels (and

made possible by the contents of registers); if we reach the halt instruction, then

the number n present in the first register at that time is said to be generated by M .

(Without loss of generality we may assume that in the halting configuration all other

registers are empty; also, we may assume that register 1 is never subject of SUB

instructions, but only of ADD instructions.)

A register machine can also be used as a number accepting device: we intro-

duce a number n in some register r0, we start working with the instruction with label

l0, and if the machine eventually halts, then n is accepted. Again, accepting register

machines characterize NRE.

In both the accepting and the computing case, the register machine can be de-

terministic, i.e., with the ADD instructions of the form li : (ADD(r), lj) (add 1 to

register r and then go to the instruction with label lj). Again, without loss of genera-

lity, we may assume that all registers are empty in the halting configuration.

A register machine can also be used for defining a language, in the following

way.

Let V = {a1, a2, . . . , as}, for some s ≥ 1. For a string x ∈ V ∗, let us denote by

vals(x), the value in base s + 1 of x. (We use base s + 1 in order to consider the

symbols of a1, a2, . . . , as as digits 1, 2, . . . s, thus avoiding the digit 0 in the left hand of

the string.) We extend this notation in the natural way to the set of strings.

Proposition 2.1. If L ⊆ V ∗, card(V ) = m, L ∈ RE, then a 3 register machine M exists

such that for every x ∈ V ∗ we have x ∈ L if and only if M halts when starting with

vals+1(x) in its first register, in the halting step, all registers of the machine are empty,

[74].
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2.5 Boolean Functions and Circuits

A Boolean function is a function f from the Cartesian product {0, 1}n to {0, 1}. Al-

ternatively, we write f : {0, 1}n → {0, 1}. The set {0, 1}n, by definition, the set of all

n-tuples (x1, x2, . . . , xn) where each xi is either 0 or 1, is called the domain of f . The

set B = {0, 1} is called the co-domain of f . Because Boolean functions are related to

logic, we think of 0 as “false” and 1 as “true”.

There are three primary Boolean functions that are widely used: The NOT func-

tion - this is just a negation; the output is the opposite of the input. The NOT func-

tion takes only one input, so it is called a unary function or operator. The output

is true when the input is false, and vice-versa. The AND function - AND function

returns true only if all inputs are true; if there is an input which is false the function

returns false. The OR function - the output of an OR function is true if at least one of

its inputs is true.

Apart from these three primary Boolean functions, there are two universal func-

tions: The NAND or Not AND function - this is a combination of two separate logi-

cal functions, the AND function and the NOT function connected together in series.

The NAND Function returns true only when any of its inputs are false. NOR or Not

OR function - this is also a combination of two separate functions, the OR function

and the NOT function connected together in series. The NOR function outputs true

only when all of its inputs are false. The NAND and NOR functions are universal

functions because they are sufficient to implement any Boolean function and can

be combined to form any other functions like OR, NOT and AND. Except NOT func-

tion, all other Boolean functions can have any number of inputs, with a minimum

of two.

Every n-ary Boolean function can be expressed as a Boolean expression in n

variables X = x1, x2, . . . , xn and two expressions are logically equivalent if and only

if they express the same Boolean function.

25



Chapter 2. Preliminaries

Boolean functions may be practically implemented by using electronic gates.

Any logic function can be implemented using either primary Boolean gates or only

NAND gates or only NOR gates. To implement using NAND gates, first the logic

function has to be written in sum of product (SOP) form. Once logic function is

converted to SOP, then it is very easy to implement using NAND gates. Similarly any

logic function in product of sums form can be implemented using NOR gates.

There is a potentially more economical way than expressions for representing

Boolean functions- namely Boolean circuits. A Boolean circuit is a graph C = (V,E),

where the nodes in V = {1, . . . , n} are called the gates of C. The graph C has a

rather special structure. First, there are no cycles in it, so we can assume that all

edges are of the form (i, j), where i < j. All nodes in the graph have the “in-degree”

(number of incoming edges) greater than or equal to 1. Also, each gate i ∈ V has

a sort s(i) associated with it, where s(i) ∈ {true, false,∨,∧,¬,∨,∧} ∪ {x1, x2, . . .}. If

s(i) ∈ {true, false} ∪ {x1, x2, . . .}, then the in degree of i is 0, that is, i must have

no incoming edges. Gates with no incoming edges are called the inputs of C. If

s(i) = ¬, then i has “in-degree” one. If s(i) ∈ {∨,∧,∨,∧}, then the “in-degree” of i

must be greater than or equal to two. Finally, node n (the largest numbered gate in

the circuit, which necessarily has no outgoing edges) is called the output gate of the

circuit.

This concludes our definition of the syntax of circuits. The semantics of circuits

specifies a truth value for each appropriate truth assignment. We let X(C) be the set

of all Boolean variables that appear in the circuit C (that is, X(C) = {x ∈ X|s(i) = x

for some gate i of C}). We say that a truth assignment T is appropriate for C if it is

defined for all variables in X(C). Given such a T , the truth value of gate i ∈ V , T (i) is

defined, by induction on i, as follows: If s(i) = true then T (i) = true, and, similarly,

if s(i) = false, then T (i) = false. If s(i) ∈ X , then T (i) = T (s(i)). If now s(i) = ¬, there

is a unique gate j < i such that (j, i) ∈ E. By induction, we know T (j), and then T (i)

is true if T (j) = false, and vice-versa. Let Ci = {j | (j, i) is an edge entering i}. If
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s(i) = ∨, then T (i) is true if only if at least for one of j ∈ Ci, T (j) is true. If s(i) = ∧,

then T (i) is true iff for all j ∈ Ci, T (j) is true. If s(i) = ∨ (symbol for NOR), then T (i)

is true if only if for all j ∈ Ci, T (j) is false. If s(i) = ∧ (symbol for NAND), then T (i) is

true iff at least for one of j ∈ Ci, T (j) is false. Finally, the value of the circuit, T (C), is

T (n), where n is the output gate.

2.6 P systems

A P system is a computing model which abstracts from the way the alive cells pro-

cess chemical compounds in their compartmental structure. In short, we have a

membrane structure, consisting of several membranes embedded in a main mem-

brane (called the skin) and delimiting regions where multisets of certain objects are

placed.

A membrane structure is represented by a Venn diagram as shown in the Fi-

gure 2.1 and is identified by a string of correctly matching parentheses, with a unique

external pair of parentheses; this external pair of parentheses corresponds to the ex-

ternal membrane, called the skin. The membrane structure corresponding to the

Venn diagram is [1[2]2[3]3[4[5[7]7[8]8]5[6]6]4]1.

A membrane without any other membrane inside is said to be elementary. We

say that the number of membranes is the degree of the membrane structure, while

the height of the tree associated in the usual way with the structure is its depth. The

membranes delimit regions (each region is bounded by a membrane and the imme-

diately lower membranes, if there are any).

In each region, we have objects which evolve according to given rules (evolu-

tion rules or symport/antiport rules). The objects can be described by symbols or

by strings of symbols (in the former case their multiplicity matters, that is, we work
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Figure 2.1: Structure of a P system

with multisets of objects placed in the regions of the membrane structure; in the se-

cond case we can work with languages of strings or, again, with multisets of strings).

Evolution rules are rewriting rules (like grammar rules) that represent the bioche-

mical reactions going on in the cell-compartments and symport/antiport rules are

transport rules that represent the vesicles through which molecules are transported

from one compartment to other.

The rules are applied non-deterministically (the rules to be used and the ob-

jects to evolve are randomly chosen) in a maximally parallel manner (in each step,

all objects which can evolve must do it). The objects can also be communicated

from a region to another one. In this way, we get transitions from a configuration of

the system to the next one.

A sequence of transitions constitutes a computation; with each halting compu-

tation we associate a result, in the form of the objects present in a given membrane

in the halting configuration, or expelled from the system during the computation.
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2.6.1 Formal Definition

We here define the most basic model of membrane systems those with symbol-

objects. Although there exists a large panoply of models of membrane systems, we

believe that they can be derived/understood from these basic concepts.

Definition 2.5 (P System with symbol objects). A P system of degree m ≥ 1 with

symbol-objects is a tuple:

Π = (O, µ, w1, w2, . . . , wm, R1, R2, . . . , Rm, i0) where

• O is an alphabet and its elements are called objects;

• µ is a membrane structure of degree m; with the membranes (and hence the re-

gions that they delimit) are labelled in a one-to-one manner with the elements

from the set 1, 2, . . . , m;

• w1, w2, . . . , wm ∈ V ∗ are the multiset of objects associated with the regions of µ;

• Ri, 1 ≤ i ≤ m, are the finite sets of evolution rules over O; Ri is associated with

the region i of µ; an evolution rule is of the form u → v, where u ∈ O+ and v is a

string over {ahere, aout|a ∈ O} ∪ {ainj
|a ∈ O 1 ≤ j ≤ m};

• i0 ∈ {0, 1, 2, . . . , m}; if i0 ∈ {1, . . . , m}, then it is the label of an elementary mem-

brane that encloses the output region; if i0 = 0, then the output region is the

environment.

For any evolution rule u → v, the length of u is called the radius of the rule and

the symbols here, out, inj , 1 ≤ j ≤ m, are called target indications.

To simplify the notation the target indication here is omitted. According to the

size of the radius of the evolution rules we distinguish between cooperative systems

(if the radius is greater than one) and non-cooperative systems (otherwise).
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A special class of cooperative systems is that of catalytic systems, where a sub-

set C ⊆ O of special symbol-objects (called catalysts) is fixed. In case of catalytic

systems, the system is of the form

Π = (O,C, µ, w1, w2, . . . , wm, R1, R2, . . . , Rm, i0).

In such systems the evolution rules can be of two different kinds: a → v and ca → cv

(catalytic rules) where c ∈ C, a ∈ O−C, and v is a string over {ahere, aout|a ∈ O−C}∪

{ainj
| a ∈ O − C, 1 ≤ j ≤ m}.

The initial configuration of the system Π is constituted by the membrane struc-

ture µ and the multisets represented by the strings wi, 1 ≤ i ≤ m. In general, we call

configuration of the system the membrane structure and the tuple of multisets of

objects present in the regions of the system.

A transition between configurations is executed using the evolution rules in a

non-deterministic maximally parallel manner (we suppose that a global clock exists,

marking the time for the whole system). This means that the objects are assigned to

the rules in such a way that, after this assignation, no other rules can be applied to

the objects that have been not assigned and this procedure is applied in parallel in

each region of the system, at each step. If an object can be used by several evolution

rules, then the choice is made in a non-deterministic way.

The application of an evolution rule u → v in a region i means to remove the

multiset of objects identified by u from region i, and to add the objects specified by

the multiset v, in the regions specified by the target indications associated to each

object in v. In particular, if v contains an object awith target indication here, then the

object a will be placed in the region i where the evolution rule has been applied. If v

contains an object a with target indication out, then the object a will be moved to the

region immediately outside the region i (this can be the environment if the region

where the rule has been applied is the skin membrane). If v contains an object a

with target indication inj then the object a is moved from the region i and placed
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into the region j (this can be done only if such region j is immediately inside region

i; otherwise the evolution rule u → v cannot be applied).

It is also possible to use target indications of the forms here, out, in, with in

being a weaker version of inj ; in such a case, an object a having the target indica-

tion in goes to any lower level membrane, non-deterministically chosen (if no inner

membrane exists, then the rule cannot be applied).

In other words, by using the evolution rule u → v in a region i that contains a

multiset identified by w, we subtract the multiset identified by u from the multiset

identified by w, and then we add the objects specified by v to the multiset of the

region i and to the multisets of adjacent regions according to the target indications

specified. In this way, at each step, all the multisets associated to the regions of the

system evolve and the system passes from some configuration to a new one; this

passage is called transition.

A sequence of transitions between configurations of a system Π is called a com-

putation; a computation is successful (or halting ) if and only if it halts and this

means that there is no rule applicable to the objects present in the last configura-

tion.

P systems can be used as acceptors or generators of sets of numbers. P system

generators start with a fixed initial configuration and non-deterministically com-

pute. The output is defined as the number of objects present in the output mem-

brane in the halting configuration of Π. In an acceptor, an input is given in a spe-

cified membrane(s) before the computation begins. If the computation halts, the

input is accepted. (For additional general definition details see [35].)

Many different classes of P systems have been investigated, and most of them

turned out to be computationally complete with respect to the Turing-Church thesis

(i.e., equal in power to Turing machines).

Rewriting rules discussed above were associated with (located in) regions and
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were acting on multisets of objects residing in these regions. Another type of rule is

associated with (located on) membranes, and they govern the movement/exchange

of objects (located in neighbouring regions) through these membranes. These types

of rules are referred to as communication rules, because exchange of objects bet-

ween neighbouring regions is the way that regions “communicate” with each other.

Symport and antiport rules are typical examples of communication rules [88]. Many

results on this kind of P systems can be found in [24, 61] and about their computa-

tional power using Petri nets can be found in [25]. A P system with communication

rules is defined in a similar fashion to a P system with multiset rewriting rules, but

with some essential differences. First of all, we consider now communication rules

rather than rewriting rules - sets of such rules are associated with membranes rather

than with regions. Moreover, since there are communication rules only, one needs

a supply of objects that can be moved into the system. Otherwise, the multiset of

objects present in the system will never change and consecutive configurations of a

computation would present merely distributions of this fixed multiset through the

regions of the system.

Besides the two main classes of P systems, with multiset rewriting rules and

communication rules, several other classes are considered in the literature. The

maximal parallelism is the mostly used regime of applying the rules in a P system,

but there are other possible modes of applications of rules. For instance, one can

use any multiset of (jointly) applicable rules in a region (the asynchronous mode),

or only one applicable rule in the whole system (the sequential mode), or a speci-

fied number of rules in the whole system or in each compartment (bounded paral-

lelism), etc.

A possible weakness of P systems considered in this chapter so far, especially

from a biological point of view, is the fact that the membrane structure is static, it

does not evolve during the computation. In some models, rules have additional ca-

pabilities and can trigger the membranes themselves to divide, dissolve, or create
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new membranes. For example, the model of P Systems with active membranes al-

lows these additional capabilities [29, 82]. Another type of P systems (called P sys-

tems with active objects) introduced in [70] allows rules to create new membranes

during the computation. The objects of an active P system consist of passive ob-

jects which do not create new membranes and active objects which do create new

membranes.

In P systems with symbolic objects, the objects were considered atomic, in the

etymological sense, and were given by symbols from a given alphabet. However, it

is natural to consider also P systems whose objects are structured. There are many

natural motivations to consider such structured objects-they come from compu-

ter science, mathematics, and biology. For instance, many molecules such as pro-

teins, DNA, RNA have string-like structures. Hence one can describe such objects by

strings over a given alphabet. For P systems operating on string-like objects we have

to specify the alphabet, the membrane structure, the strings present in the system

at the beginning of the computation, the rules for processing the strings, and the

way to define the result of a computation. The strings of a P system can be consi-

dered either as a set (languages) or as a multiset. Then, the rules must be string

processing rules one can consider, among others, parallel string rewriting such as in

Lindenmayer systems, or sequential string rewriting such as in Chomsky grammars.

Another fruitful idea is to use string evolving rules which are specific for DNA pro-

cessing, such as splicing or insertion-deletion. To generate an exponential works-

pace (for “solving” computationally hard problems) one can use operations which

replicate strings.

Many of these variants lead to computationally universal systems, while several

variants with an enhanced parallelism are able to solve NP-complete problems in

polynomial (often, linear) time - of course, by making use of an exponential space.

A series of applications, in biology, linguistics, computer science, management, etc.,

were reported.
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Until now we have considered hierarchical arrangement of membranes which

correspond to cell-like membrane structure described by trees. Tissue P systems

have been motivated by the structure and behaviour of multicellular organisms where

they form a multitude of different tissues performing various functions [71]; the

structure of the system is instead represented as a graph where nodes are associated

with the cells which are allowed to communicate alongside the edges of the graph.

Combining the ideas of tissue P systems and spiking neurons, spiking neural P

systems (SN P systems for short) were introduced.

2.6.2 Spiking Neurons

Information processing in the brain depends not only on the properties of neural

networks but also on the properties of processing units-neurons. We recall here

from [50, 67] some notions about the neural cell, mainly focusing on the electric

pulses a neuron is transmitting through its synapses; such a pulse is usually called

a spike, or action potential which was the major inspiration for the development of

spiking neural P systems.

Neuron, a one-membrane cell, is the basic element in the human brain. Fi-

gure 2.2 shows schematic illustration of a neuron and its parts. It consists of sy-

napses, a soma, dendrites, an axon, an axon hillock and axon terminals. Neurons

use short and sudden increase in voltage to send information. A neuron receives

small electrical pulses usually called spikes from other neurons through its den-

drites. The spikes are stored and processed in the cell body called soma. Dendrites

are thin numerous bushy extensions of the cell.

They receive spikes from the synapses and carry them to soma. When the

weight (number of spikes) gets bigger than a particular value, associated with axon

hillock, called the threshold, a neuron fires; that is, it emits an output signal called a
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spike. Spikes are produced in the initial segment of an axon (the only neuronal out-

put extension). Then they quickly propagate along the axon towards other neurons

Figure 2.2: Schematic illustration of a neuron and its parts.

within a network. At its distant end an axon makes thousands of branches each of

which is called axon terminal, which is the input to other neuron. Spikes cannot just

cross the gap between one neuron and the other. They have to be handled by the

most complicated part of the neuron: the synapse, connection between the axon

terminal of a neuron and the dendrite of the other neuron. Neurons send out erra-

tic sequences of spikes, or spike-train, which alter dramatically in frequency over a

short period of time. Since all spikes of a given neuron look alike, the form of the

action potential does not carry any information. Rather, it is the number and the

timing of spikes what matter.

So, the size and the shape of a spike is independent of the input of the neuron,

but the time when a neuron fires depends on its input. Action potentials in a spike

train are usually well separated. Even with very strong input, it is impossible to ex-

cite a second spike during or immediately after a first one. The minimal distance
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between two spikes defines the refractory period of the neuron. Neurons use this

spatial and temporal information of incoming spike patterns to encode their mes-

sage to other neurons. A typical neuron is able to receive thousands of spikes and

transmit thousands of spikes concurrently. There are many different schemes to use

this spike timing information in neural computation.

In the next section, we will capture some of these ideas in the framework of

neural-like P systems as existing in the membrane computing literature, adapting

the definition to the case of spiking.

2.6.3 Neural-Like P Systems

We also recall here the initial definition of a neural-like P system as considered in [9,

50]. The basic idea is to consider cells related by synapses and behaving according

to their states; the states can model the firing of neurons, depending on the inputs,

on the time of the previous firing, etc.

Definition 2.6 (Neural-like P System). Formally, a neural-like P system, of degree

m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3, . . . , σm , syn , i0), where

1. O is a finite non-empty alphabet (of objects, usually called impulses;

2. σ1, σ2, σ3, . . . , σm are cells (also called neurons), of the form

σi = (Qi, Si,0, wi,0, Ri), 1 ≤ i ≤ m,

where

(a) Qi is a finite set (of states);

(b) Si,0 ∈ Qi is the initial state;
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(c) wi,0 ∈ O∗ is the initial multiset of impulses of the cell;

(d) Ri is a finite set of rules of the form sw → s′xygozout, where s, s′ ∈ Qi, w, x ∈

O∗, ygo ∈ (O×{go})∗ and zout ∈ (O×{out})∗ with the restriction that zout = λ

for all i ∈ {1, 2, . . . , m} different from i0;

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} ( synapses among cells);

4. i0 ∈ {1, 2, . . . , m} indicates the output cell.

The standard rules used in this model are of the form sw → s′w′, where s, s′ are

states and w,w′ are multisets of impulses. The mark “go” assigned to some elements

of w′ means that these impulses have to leave immediately the cell and pass to the

cells to which we have direct links through synapses. The communication among

the cells of the system can be done in a replicative manner (the same object is sent

to all adjacent cells), or in a non-replicative manner (the impulses are sent to only

one neighbouring cell, or can be distributed non-deterministically to the cells to

which we have synapses). The objects marked with “out” (they can appear only in

the cell i0) leave the system. The computation is successful only if it halts, reaches a

configuration where no rule can be applied.

The sequence of objects (note that they are symbols from an alphabet) sent to

the environment from the output cell is the string computed by a halting computa-

tion, hence the set of all strings of this type is the language computed/generated by

the system.

Several ingredients of a neural-like P system are modified in spiking neural P

system, bringing the model closer to the way the neurons communicate by means

of spikes.
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2.6.4 Spiking Neural P Systems (SN P Systems)

Spiking neural P systems [50] (shortly called SN P systems) are parallel and distri-

buted computing models inspired by the neurophysiological behaviour of neurons

sending electrical pulses of identical voltages called spikes to the neighbouring neu-

rons through synapses. It is represented as a directed graph where nodes correspond

to the neurons having spiking and forgetting rules that involve the spikes present in

the neuron in the form of occurrences of a symbol a. The arcs indicate the synapses

among the neurons. Formally, a spiking neural P system is defined as follows.

Definition 2.7 (An SN P system). Mathematically, we represent a spiking neural P

system, of degree m ≥ 1, in the form

Π = (O, σ1, σ2, σ3, . . . , σm, syn, i0), where

1. O = {a} is the singleton alphabet (a is called spike) ;

2. σ1, σ2, σ3, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m;

where

(a) ni ≥ 0 is the initial number of spikes contained by the cell;

(b) Ri is a finite set of rules of the following two forms:

i. E/ar → a; d, where E is a regular expression over O, r ≥ 1, and d ≥ 0;

Number of spikes present in the neuron is described by the regular ex-

pression E, r spikes are consumed and it produces a spike, which will

be sent to other neurons after d time units

ii. as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any rule

E/ar → a; d of type (i) from Ri;
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3. syn ⊆ {1, 2, 3, . . . ,m} × {1, 2, 3, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m ( synapses

among cells);

4. i0 ∈ {1, 2, 3, . . . , m} indicates the output neuron.

The rules of type E/ar → a; d are spiking rules, and can be applied only if the

neuron contains n spikes such that an ∈ L(E) and n ≥ r. When neuron σi spikes,

its spike is replicated in such a way that one spike is sent to all neurons σk such that

(i, k) ∈ syn, and σk is open at that moment. If d = 0, then the spikes are emitted

immediately, if d = 1, then the spikes are emitted in the next step and so on. In

the case d ≥ 1, if the rule is used in step p, then in step p, p + 1, p + 2, . . . , p + d − 1,

the neuron is closed and it cannot receive new spikes (If a neuron has a synapse

to a closed neuron and sends spikes along it, then the spikes are lost; that reflects

the refractory period of biological neurons). In step p + d, the neuron spikes and

becomes open again, hence can receive spikes (which can be used in step p + d). If

a neuron σi fires and either it has no outgoing synapse, or all neurons σk such that

(i, k) ∈ syn are closed, then the spike of neuron σi is lost; the firing is allowed, it takes

place, but results in no new spikes.

If d = 0, then sometimes it is omitted when writing the rule and are called non

delayed rules. We also consider SN P systems without delays (i.e. d = 0 in all rules).

The rules of type as → λ are forgetting rules; s spikes are simply removed (“for-

gotten”) when applying. Like in the case of spiking rules, the left hand side of a

forgetting rule must “cover” the contents of the neuron, that is, as → λ is applied

only if the neuron contains exactly s spikes. Note that the delay plays no significant

role here, as only the contents of this neuron are affected. Hence we omit the delay

in these types of rules. In each neuron σi with k rules, the rules are numbered as i1,

i2, . . ., ik.

If we have a rule E/ar → a; d with L(E) = ar, then we write simply ar → a; d. If

all rules are of this form, then the system is called bounded (or finite), because it can

39



Chapter 2. Preliminaries

handle only finite numbers of spikes in the neurons.

The configuration of the system is described by both the contents of each neu-

ron and its state, which can be expressed as the number of steps to wait until it

becomes open (zero if the neuron is already open). Thus 〈α1/d1, α2/d2, . . . , αm/dm〉 is

a configuration where neuron σi contains αi ≥ 0 spikes and it will open after di ≥ 0

steps, for i = 1, 2, 3, . . . , m. With this notation, the initial configuration of the system

is described by C0=〈n1/0, n2/0, n3/0, . . . , nm/0〉.

The SN P system is synchronized by means of a global clock and works in a

locally sequential and globally maximal manner. That is, the working is sequential

at the level of each neuron. In each neuron, at each step, if there are more than

one rule is enabled by its current contents, then only one of them (chosen non-

deterministically) can fire. But still, the system as a whole evolves in parallel and in

a synchronising way, as in, at each step, all the neurons (that have an enabled rule)

choose a rule and all of them fire at once.

Using the rules, we pass from one configuration of the system to another confi-

guration, such a step is called a transition. A computation of Π is a finite or infinite

sequence of transitions starting from the initial configuration, and every configura-

tion appearing in such a sequence is called reachable.

With any computation halting or not we associate a spike train, a sequence of

digits of 0 and 1, with 1 appearing in position which indicates the steps when the

output neuron sends spikes out of the system. One of the neurons is considered to

be the output neuron, and its spikes are sent to the environment.

In the initial paper on SN P systems [50], the result was often defined as the

distance between the first two spikes of a spike train. We denote by N2(Π) the set

of numbers computed by considering the distance between the first two spikes of a

spike train, with the subscript 2 reminding of the way the result of a computation is

defined, and by N2SNPm(rulek, consp, forgq) the family of all sets N2(Π) computed
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as above by spiking neural P systems with at most m ≥ 1 neurons, using at most

k ≥ 1 rules in each neuron, with all spiking rules E/ar → a; d having r ≤ p, and all

forgetting rules as → λ having s ≤ q. When one of the parameters m, k, p, q is not

bounded, then it is replaced with ∗.

Then in [19] several extensions were examined. The distance between the first

k spikes of a spike train, or the distances between all consecutive spikes, taking into

account all intervals or only intervals that alternate, all computations or only halting

computations, etc. The way one generally defines the result in membrane compu-

ting can also be considered in SN P systems, namely, the result is taken to be the

total number of spikes collected in the output neuron (or the environment) during

a computation at moment the computation halts.

Moreover, the result can obviously be defined as the spike train itself. In this

way, SN P systems are used as binary language generators. The SN P systems men-

tioned above all work in the generating mode: starting from a fixed initial configu-

ration the nondeterministic features of the system make it run in different compu-

tations, and the output of these computations is collected.

Actually, an SN P system can also work in the accepting mode: no output neu-

ron is needed, but instead an input neuron is designated. Then as an encoding of

input n, two consecutive spikes are introduced in this input neuron, at an interval of

n time steps; the number n is accepted if the resulting computation halts.

When both input and output neurons are considered, the SN P system can be

used as a transducer, both for strings and infinite sequences, as well as for compu-

ting numerical functions. Spikes can be introduced in the input neuron, at various

steps, while the spikes of the output neuron are sent to the environment. A binary

sequence is associated with the spikes entering or exiting the system. In the transdu-

cer mode, a large class of (Boolean) functions can be computed. They are also used

as computation devices that solve computationally difficult (NP-complete) decision

problems [31].
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SN P Systems as Language Generators

In the generative mode, the system has no input neurons and one of the neurons is

considered to be the output neuron, and its spikes are sent to the environment.

Let Π=(O, σ1, σ2, σ3, . . . , σm , syn , i0), be an SN P system and let γ = C0 =⇒ C1 =⇒

. . . =⇒ Ck be an halting computation. (C0 is the initial configuration, and Ci−1 =⇒ Ci

is the ith step of γ). Let us denote by bin(γ) the string b1b2 . . . bk where bi ∈ {0, 1}

and bi = 1 if and only if the (output neuron of the) system Π sends a spike into the

environment in step i of γ otherwise bi = 0. We denote by B the binary alphabet

{0, 1}, and by COM(Π) the set of all halting computations of Π. Moreover, we define

the language generated by Π by L(Π) = {bin(γ) | γ ∈ COM(Π)}.

The complexity of an SN P system Π is described as LSNPm(rulek, consp, forgq),

the family of languages L(Π), generated by systems Π with at most m neurons, each

neuron having at most k rules, each of the spiking rules consuming at most p spikes

and each forgetting rule removing at most q spikes. As usual a parameter m, k, p, q is

replaced with ∗ if it is not bounded. If the SN P systems are finite (i.e., contain only a

bounded number of spikes), we denote the corresponding families of languages by

LFSNPm(rulek, consp, forgq).

Let us mention some results about languages generated by SN P systems [18].

Theorem 2.5. (i) There are finite languages (for instance, {0k, 10j}, for any (k ≥ 1, j ≥

0), which cannot be generated by any SN P system, but for any L ∈ FIN, L ⊆ B+, we

haveL{1} ∈ LFSNP1(rule∗, cons∗, forg0) and ifL ∈ FIN, L ⊆ B+, L = {x1, x2, . . . , xn},

then {0i+3xi | 1 ≤ i ≤ n} ∈ LFSNP∗(rule∗,cons1, forg0).

(ii) The family of languages generated by finite SN P systems is strictly included in the

family of regular languages over the binary alphabet, but for any regular language

L ⊆ V ∗ there is a finite SN P system Π and a morphism h : V ∗ → B∗ such that

L = h−1(L(Π)).

(iii) LSNP∗(rule∗, cons∗, forg∗) ⊂ REC, but for every alphabet V = {a1, a2, . . . , ak}

42



Chapter 2. Preliminaries

there are two symbols b, c not in V , a morphism h1 : (V ∪ {b, c})∗ → B∗ and a projec-

tion h2 : (V ∪ {b, c})∗ → V ∗ such that for each language L ⊆ V ∗, L ∈ RE, there is an

SN P system Π such that L = h2(h1
−1(L(Π))).

These results show that the language generating power of SN P systems is rather

eccentric; on the one hand, finite languages (like {0, 1}) cannot be generated, on the

other hand, we can represent any RE language as the direct morphic image of an

inverse morphic image of a language generated in this way. This eccentricity is due

mainly to the restricted way of generating strings, with one symbol added in each

computation step.

Example 2.2.

We will illustrate some definitions of standard SN P system with an example

from Section 5 in [50]. Figure 2.3(a) represents the initial configuration of the SN

P system Π1. We have three neurons, labelled with 1, 2, 3, with neuron 3 being the

output one. The neurons are represented by nodes of a directed graph whose ar-

rows represent the synapses; an arrow also exits from the output neuron, pointing

to the environment; in each neuron we specify the rules and the spikes present in

the initial configuration. Neuron σ1 is having one spiking rule and one forgetting

rule. The rule a2/a → a fires if it contains two spikes; one spike is consumed, the

other remains available for the next step. Neuron σ2 is having two same rules (firing

rules which can be chosen in a non-deterministic way, the difference between them

being in the delay from firing to spiking), and neuron σ3 having two firing and one

forgetting rule. It is formally represented as:

Π1 = ({a}, σ1, σ2, σ3, syn, 3), with

σ1 = (2, {a2/a → a; 0, a → λ}),

σ2 = (1, {a → a; 0, a → a; 1}),

σ3 = (3, {a3 → a; 0, a → a; 1, a2 → λ}),

syn = {(1,2),(2,1),(1,3),(2,3)}.
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The initial configuration of the system is < 2/0, 1/0, 3/0 >. It works as follows.

All neurons can fire in the first step, with neuron σ2 choosing non- deterministically

between its two rules.

 a2

11  :  a2/ a a 
  

12  : a 
 

a 

21  :  a a ; 0 

22  : a a ; 1 

a3 

31 : a
3
 a ; 0 

32 :  a a ; 1 

33 : a2  

(a)  

 

 

 

< 2/0, 1/0, 3/0>
 

 

 

11, 21, 31
 

11, 22, 31

 

12, 2s, 32 

12, 20, 3s
 

11, 21, 33
 

11, 22, 33
 

 

λ

λ

1

2

3

 
 

(b)

< 2/0, 1/0, 2/0> < 1/0, 0/1, 1/0>

< 1/0, 0/0, 0/1>

< 0/0, 0/0, 0/0>

Figure 2.3: (a) An SN P system Π1 (b) Evolution of Π1

Output neuron σ3 sends its spike to the environment. If the neuron σ2 uses its

first rule, then both the neurons σ1 and σ2 exchange their spikes and send a spike to

the output neuron σ3 and we reach the configuration < 2/0, 1/0, 2/0 >. As long as

neuron σ2 uses the rules a → a; 0, the computation cycles in the same configuration:

neurons σ1 and σ2 exchange spikes, while σ3 forgets its two spikes.

However, at any moment, starting with the first step of the computation, σ2 can

choose to use the rule a → a; 1. This means that the spike of σ1 cannot enter σ2, it

only goes to σ3; in this way, σ2 will never work again because it remains empty and

we reach the configuration < 1/0, 0/1, 1/0 >. Here neuron σ1 has to use its forgetting

rule a → λ, while neuron σ3 fires, using the rule a → a; 1. Simultaneously, σ2 emits

its spike, but it cannot enter σ3 (it is closed this moment); the spike enters neuron

σ1 and we get the configuration < 1/0, 0/0, 0/1 >. The spike in σ1 is forgotten in

the next step. In this way, no spike remains in the system and we reach the halting

configuration < 0/0, 0/0, 0/0 >. The computation ends with the expelling of the
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spike from neuron σ3. Because of the waiting moment imposed by the rule a → a; 1

from σ3, the two spikes of this neuron cannot be consecutive, but at least two steps

must exist in between. Thus, we conclude that Π computes all natural numbers

greater than or equal to two. Thus, we conclude that

N2(Π1) = N
+ − {1} ∈ N2SNP3(rule3, cons3, forg2)

The evolution of the system Π1 can be analyzed on a transition diagram as that from

Figure 2.3(b): because the system is finite, the number of configurations reachable

from the initial configuration is finite, too, hence, we can place them in the nodes

of a graph, and between two nodes/configurations we draw an arrow if and only if

a direct transition is possible between them. In Figure 2.3(b) we have also indicated

the rules used in each neuron, with the following conventions: ij denotes the jth

rule in neuron σi, with 31 being written in italics, in order to indicate that a spike is

sent out of the system at that step; when a neuron i = 1, 2, 3 uses no rule, we have

written i0, and when it spikes (after being closed for one step), we write is.

The transition diagram of a finite SN P system can be interpreted as the repre-

sentation of a non-deterministic finite automaton, with C0 being the initial state, the

halting configurations being final states, and each arrow being marked with 0 if in

that transition the output neuron does not send a spike out, and with 1 if in the res-

pective transition the output neuron spikes; in this way, we can identify the language

generated by the system. In the case of the finite SN P system Π1, the generated lan-

guage is L(Π1) = L(1(0+ + λ)01).

Normal Forms and Universality Results

In the initial definition of SN P systems several ingredients are used (delay, forget-

ting rules), some of them of a general form (general synapse graph, general regular

expressions). As shown in [46, 80], rather restrictive normal forms can be found,
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in the sense that some ingredients can be removed or simplified without losing the

computational completeness. For instance, the forgetting rules or the delay can be

removed, both the indegree and the outdegree of the synapse graph can be bounded

by 2, while the regular expressions from firing rules can be of very restricted forms.

The following universality results were proved in [50] and extended in [34] to

other ways of defining the result of a computation.

Theorem 2.6. 1. NFIN = N2SNP1(rule∗, cons1, forg0) = N2SNP2(rule∗, cons∗, forg∗).

2. NRE = N2SNP∗(rulek, consp, forgq), for all k ≥ 2, p ≥ 3, q ≥ 3.

3. NSLIN = N2SNP∗(rulek, consp, forgq, bounds), for all k ≥ 3, q ≥ 3, p ≥ 3, s ≥ 3.

There is a universal computing SN P system with standard rules without delay

having 11 neurons [78], and one with extended rules which has 3 neurons [77].

SN P Systems as Transducers

Standard spiking neural P systems in transducer mode can simulate the Boolean

circuits [52], with two spikes sent out of the system encoded as 1 and one spike as

0. Boolean circuits are constructed using these fundamental gates and synchroni-

sing SN P system to establish synchronization among the gates to output the correct

result.

In [66], a uniform solution to the SAT (in CNF, with n variables and m clauses)

is provided using standard SN P systems without delay having 3n2 + 8m + 5 neu-

rons, providing the solution in a number of steps which is linear in the number of

variables. Two bits were used to code each literal of a clause, hence the computation

cannot end in less than 2n steps.
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2.6.5 SN P Systems with Anti-Spikes (SN PA Systems)

We discuss SN PA systems [79] in detail as these variants were considered in the

thesis for translation.

Definition 2.1 (SN P systems with anti-spikes) A spiking neural P system with anti-

spikes, of degree m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3 ,. . ., σm , syn , in, out), where

1. O = { a, a } is the binary alphabet. a is called spike and a is called anti-spike.

2. σ1, σ2, σ3 ,. . ., σm are neurons, of the form

σi=(ni, Ri) , 1 ≤ i ≤ m, where

(a) |ni| is the number of spikes or anti-spikes contained in the neuron σi and

if ni > 0 then the neuron is having ni spikes and if ni < 0 then the neuron

is having ni anti-spikes;

(b) Ri is a finite set of rules of the following two forms:

i. E/br → b′, where E is a regular expression over a or a , while b, b′ ∈

{a, a}, and r ≥1.

ii. bs → λ, where λ is the empty word, s ≥ 1, b ∈ {a, a} and for all E/br →

b′ from Ri, bs /∈ L(E) where L(E) is the language defined by E.

3. syn ⊆ { 1, 2, 3, . . ., m} × { 1, 2, 3, . . ., m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

among cells);

4. in, out ∈ {1, 2, 3, . . . , m} are the input and output neurons respectively.

The rules of type E/br → b′ are spiking rules, and they are used only if the neuron

contains n bs such that bn ∈ L(E) and n ≥ r. When neuron σi sends b′ (a spike/anti-

spike), it is replicated in such a way that one spike/anti-spike is sent to all neurons

σk such that (i, k) ∈ syn.
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The rules of type bs → λ are the forgetting rules; s spikes/anti-spikes are simply

removed (“forgotten”) when applying the rule. Like in the case of spiking rules, the

left hand side of a forgetting rule must “cover” the contents of the neuron, that is,

as→ λ is applied only if the neuron contains exactly s spikes.

A spike/anti-spike emitted by neuron σi will pass immediately to all neurons

σk such that (i, k) ∈ syn. That means transmission of spikes/anti-spikes takes no

time (since the rules are non delayed rules), the spikes/anti-spikes will be available

in neuron σk in the next step. There is an additional fact that a and a cannot stay

together, they annihilate each other. If a neuron has either objects a or objects a,

and further objects of either type (maybe both) arrive from other neurons, such that

we end with ar and as inside, then immediately an annihilation rule aa → λ (which

is implicit in each neuron), is applied in a maximal manner, so that either ar−s or

(a)s−r remain for the next step, provided that r ≥ s or s ≥ r, respectively. This

mutual annihilation of spikes and anti-spikes takes no time and the annihilation

rule has priority over spiking and forgetting rules, so each neuron always contains

either only spikes or anti-spikes. Like in [79], we avoid using rules ac → a, but not

the other three types, corresponding to the pairs (a, a), (a, a), (a, a). If we have a rule

E/br → b′ with L(E) = {br}, then we write it in the simplified form as br → b′.

The configuration of the system is described by C = 〈β1, β2, . . . , βm〉 , where βi is

a the number of spikes/anti-spikes present in neuron σi. The initial configuration is

C0 = 〈n1, n2, . . . , nm〉.

A global clock is assumed and in each time unit, each neuron which can use a

rule should do it (the system is synchronized), but the work of the system is sequen-

tial locally: only (at most) one rule is used in each neuron except the annihilation

rule which fires maximally with highest priority. For example, if a neuron σi has two

firing rules, E1/a
r → a and E2/a

k → a with L(E1) ∩ L(E2) 6= ∅, then it is possible

that each of the two rules can be applied, and in that case only one of them is cho-

sen non-deterministically. Thus, the rules are used in the sequential manner in each
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neuron, but neurons function in parallel with each other. In each step, all neurons

which can use a rule of any type, spiking or forgetting, have to evolve, using a rule.

Using the rules in this way, we pass from one configuration of the system to

another configuration; such a step is called a transition. For two configurations C

and C′ of Π we denote by C =⇒ C′, if there is a direct transition from C to C′ in Π.

A computation of Π is a finite or infinite sequence of transitions starting from

the initial configuration, and every configuration appearing in such a sequence is

called reachable. A computation halts if it reaches a configuration where no rule

can be used. An SN PA system can be used as a computing device in various ways.

In the thesis, we use them as language generators and transducers. In the generative

mode, one of the neuron is considered as output neuron and it sends output to the

environment. The moments of time when a spike is emitted by the output neuron

are marked with 1, the moments of time when an anti-spike emitted is marked with

0 and no output moments are just ignored. This binary sequence is called the spike

train of the system- it might be infinite if the computation does not stop. With hal-

ting configurations, we associate a language, the binary strings describing the spike

trains.

Let γ = C0 =⇒ C1 =⇒ . . . =⇒ Ck be an halting computation. Let us denote by

bin(γ) the string b1b2 . . . bk where bi ∈ {0, 1} and bi = 1 iff the output neuron of the

system Π sends a spike into the environment in the step i of γ, bi = 0 iff it sends an

anti-spike, and bi = λ if the step i generated no output. We denote by B the binary

alphabet {0, 1} and by COM(Π), the set of all halting computations of Π. Moreover,

we define the language generated by Π by L(Π) = {bin(γ) | γ ∈ COM(Π)}.

The complexity of an SN PA system Π is described as LSNPAm (rulek,consp1,p2,

forgq1,q2), the family of languages L(Π), generated by systems Π with at most m neu-

rons, each neuron having at most k rules, each of the spiking rules consuming at

most p1 spikes and p2 anti-spikes and each forgetting rule removing at most q1 spikes

and q2 anti-spikes. As usual a parameter m, k, p1, p2, q1, q2 is replaced with ∗ if it is not
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bounded. If the underlying SN PA systems are finite, we denote the corresponding

families of languages by LFSNPAm(rulek, consp1,p2, forgq1,q2).

Example 2.3.

Consider the graphical representation of an SN P system with anti-spikes Π4 in

Figure 2.4(a). It is formally denoted as

Π4 = (O, σ1, σ2, syn, 2), with

σ1 = (−1, {a → a}),

σ2 = (2, {a2/a → a, a2 → a} ),

syn = {(1, 2), (2, 1)}.

The evolution of the system Π4 can be analysed on a transition diagram as that from

2

 a 

2

a a 
a a 

1

2

a 
a a a2/

< -1, 2 >

< 1, 1 >

(a) (b)

<11, 21>

<11, 22>
11:

21:

22:

Figure 2.4: SN P system with anti-spikes Π4 generating 0∗1

Figure 2.4(b) because the system is finite, the number of configurations reachable

from the initial configuration is finite too, hence, we can place them in the nodes of a

graph and between two nodes/configurations we draw an arrow if and only if a direct

transition is possible between them. In the Figure 2.4(b), we have also indicated

the rules used in each neuron with the following conventions; for each ij we have

written only the subscript ij with 21 written in italics and 22 in bold in order to

indicate that an anti-spike is sent to environment at steps when 21 is used and a

spike when 22 is used; i0 is written when a neuron σi uses no rule.

The functioning can easily be followed on this diagram, so that we only briefly

describe it. We have two neurons, with labels 1, 2; neuron σ2 is the output neuron.
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Initially neuron σ1 has one anti-spike with a rule and σ2 has two spikes with two

rules and non-determinism between its two rules. So the initial configuration of the

system, C0 =< −1, 2 >.

The two neurons fire in the first step. Neuron σ1 uses its rule a → a and sends a

spike (1) to σ2. Neuron σ2 can choose any of its two rules and as long as it uses first

rule, one spike is consumed and an anti-spike is sent to σ1 and the environment. In

the next step the system will be in the same configuration. At any instance of time,

starting from step 1, σ2 can choose its second rule, which consumes its two spikes

and sends a spike to σ1 and environment. In the next step each neuron will have one

spike, reaching the configuration < 1, 1 > and the systems halts.

Similar to the SN P system, the transition diagram of a finite SN PA system can

also be interpreted as the representation of a non-deterministic finite automaton,

with C0 being the initial state, the halting configurations being final states and each

arrow being marked with 0 if in that transition the output neuron sends an anti-spike

and with 1 if it sends a spike. In this way, we can identify the language generated by

the system. So the language generated by the SN PA system Π4 is 0∗1.

2.6.6 Other Variants of SN P Systems

The derivation mode considered in the initial paper of the SN P systems is the maxi-

mal strategy (locally sequential and globally maximal strategy). Several SN P sys-

tems are introduced by considering other derivation modes. Different variants of

SN P systems are also developed by researchers by adding features inspired by na-

ture such as axons, neuron division, astrocytes, and inhibitory impulses. Apart from

the SN P systems described below, there were investigated several other types of SN

P systems: with several output neurons [47] and with packages of spikes sent along

specified synapse links ([9]) etc. We refer the reader to P systems web page at [2].
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Extended SN P Systems

An extended spiking neural P system [8] has more general rules of the form

E/ar → ap; d, where r ≥ 1 and r ≥ p ≥ 0. Such rules operate in the same manner

as spiking rules of standard SN P systems except that firing sends p spikes along the

each outgoing synapses ( and after d time steps, these p spikes are received simulta-

neously by each neighbouring neuron). Note when p = 1, the rule E/ar → ap; d is

reduced to standard spiking rule and when p = 0, the rule becomes a forgetting rule.

Languages - even on arbitrary alphabets - can be obtained using extended rules.

In this case, a language can be generated by associating the symbol bi with a step

when the output neuron sends out i spikes, with an important decision to take in

the case i = 0 : we can either consider b0 as a separate symbol, or we can assume

that emitting 0 spikes means inserting λ in the generated string. Thus, we both ob-

tain strings over arbitrary alphabets, not only over the binary one, and, in the case

where we ignore the steps when no spike is emitted, a considerable freedom is ob-

tained in the way the computation proceeds. This latter variant (with λ associated

with steps when no spike exits the system) is considered below.

We denote by LSN ePm(rulek, consp, prodq) the family of languages L(Π), gene-

rated by SN P systems Π using extended rules, with the parameters m, k, p, and q

similar as standard SN P systems. The next counterparts of the results from Theo-

rem 2.6 were proved in [19].

Theorem 2.7. (i) FIN = LSN eP1(rule∗, cons∗, prod∗) and this result is sharp, as

LSN eP2(rule2, cons2, prod2) contains infinite languages.

(ii) LSN eP1(rule∗, cons∗, prod∗) ⊆ REG ⊂ LSN eP3(rule∗, cons∗, prod∗); the second in-

clusion is proper, becauseLSN eP3(rule3, cons4, prod2)−REG 6= ∅; actually, LSN eP3(rule3,

cons6, prod4) contains non-semilinear languages.

(iii) RE = LSN eP∗(rule∗, cons∗, prod∗).
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Asynchronous SN P Systems

The standard SN P system model relies on the fact that all neurons fire in each step

where they are fireable. This synchronization is quite powerful so it is of interest to

study the power of SN P systems with lesser requirements. An asynchronous SN P

system (introduced in [17]) is an SN P system model which does not require the neu-

rons to fire in a given time frame. During each step, any number of fireable neurons

are fired (including the possibility of firing no neurons). When a neuron is fireable

it may (or may not) choose to fire during the current step. If the neuron chooses not

to fire, it may fire in any later step as long as the rule is still applicable. (The neuron

may still receive spikes while it is waiting which may cause the neuron to no longer

be fireable.) Hence there is no restriction on the time interval for firing a neuron.

Once a neuron chooses to fire, the appropriate number of spikes are sent out after

a delay of exactly d time steps and are received by the neighbouring neurons during

the step when they are sent.

Sequential SN P Systems

Sequential SN P systems [49] require one and only one neuron to fire per step when

the system is not dormant. When the system is dormant, no neuron fires in the

current step (but the computation progresses by decreasing the remaining delay for

each closed neuron by one). We will investigate the computational power of sequen-

tial SN P systems whose behaviour is controlled to operate in a sequential manner.

More precisely, the SN P system is restricted in its operation as follows:

• As before, the system starts from a fixed initial configuration and is synchroni-

zed, i.e., there is a global clock (so all the neurons use this clock).

• However, a step consists of nondeterministically choosing a “fireable” rule.

(For convenience, a forgetting rule is classified as a “fireable” rule.) If there
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is no fireable rule, then the system is dormant until a rule becomes fireable.

However, the clock will keep on ticking.

• The convention for halting is like before, i.e., all neurons are open and none

are fireable.

SN P Systems with Exhaustive use of Rules

In the usual SN P system (either standard SN P system or extended as discussed

above), although the system works in parallel at the level of all neurons (i.e., the

system works in the synchronous manner), at the level of each neuron only (at most)

one rule can be applied. In the SN P systems working in the exhaustive manner [51],

when a rule is applied, then it must be applied as many times as possible in that

neuron so that the neuron remains as few spikes as possible. Under the exhaustive

mode, not only the system works in parallel at the level of all neurons, but also a rule

is applied in a maximally parallel manner at the level of each separate neuron.

SN P systems with Astrocytes

An important ingredient of neurobiology is missing from SN P systems: the astro-

cytes. They are cells which play an essential role in the functioning and interaction

of neurons, by feeding them differently with nutrients depending on their indivi-

dual activity. More specifically, astrocytes are cells which sense at the same time the

spike traffic along several neighbouring axons, and feed the respective neurons (e.g.,

with calcium) depending on the spikes frequency. The first attempt to introduce this

kind of cells into SN P systems was made by Binder et al. in [12]. In this model, as-

trocytes have the role of “excitatory” and “inhibitory” according to the quantity of

spikes passing through the synapse in one time. Also, a simple model is considered

by Păun in [32], where astrocytes only have the role of “inhibitory”. In such a mo-

del, the system works in a rather restricted manner: An astrocytes checking several
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axons leaves to pass only one spike along them, suppressing all others. Obviously.

SN P systems with astrocytes have stronger computing power than the general SN

P systems, thus they are also computationally complete. However they add a new

powerful feature so that this kind of models has a significant potential to be applied

to various problems in terms ease of programming and in terms of computational

complexity.

SN P Systems with Neuron Division and Budding

The biological motivation for the mechanism of neuron division and budding that

we introduce into SN P systems comes from the recent discoveries in neurobiology

related to neural stem cells. Neural stem cells are persistent throughout life within

central nervous system in the adult mammalian brain, which ensures a life-long

contribution of new neurons to a self-renewing nervous system with about 30000

new neurons being produced every day. These observations are incorporated in SN

P systems by considering neuron division and budding, and by providing a “synapse

dictionary” according to which new synapses are generated. In [81], SN P systems

with neuron division and budding solved computationally hard problems, where

for all n,m ∈ N
+ all the instances of SAT(n,m) with at most n variables and at most

m clauses are solved in a deterministic way in polynomial time using a polynomial

number of initial neurons.

2.7 Petri Nets

Petri nets are graphical and mathematical modelling tools applicable to systems that

are characterized as being concurrent, distributed, non-deterministic and parallel.

As a mathematical tool, it provides a set of state equations, algebraic equations and

other mathematical models governing the behaviour of the systems. A Petri net
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is graphically represented as a directed weighted bipartite graph consisting of two

kinds of nodes called places and transitions, where arcs are either from places to

transitions or from transitions to places. The places are drawn as circles, transitions

as bars or boxes. Arcs are labelled with their weights, where a k-weighted arc can

be interpreted as the set of k parallel arcs. Labels for unit weight arcs are usually

omitted. In order to study the dynamic behaviour of a Petri net modelled system in

terms of its states and state changes, each place may potentially hold either none or

a positive number of tokens.

2.7.1 Formal Definition

The formal definition of the Petri net that we start with is essentially the same as that

in [76].

Definition 2.8 (P/T net). A P/T net (also known as a place/transition net or a Petri

net) is a 5-tuple N = (P, T, F,W,M0), where

P = {p1, p2, . . . pm} is a finite, non-empty set of places;

T = {t1, t2, . . . tn} is a finite, non-empty set of transitions;

F ⊆ (P × T )∪(T × P ) is a set of directed arcs;

W : F → N
+ is a weight function; and

M0 : P → N is the initial marking.

A place p is an input (or an output) place of a transition t iff there exists an

arc (p, t) (or (t, p), respectively) in the set F . The sets of all input and output places

of a transition t are denoted by I(t) = {p | (p, t) ∈ F} and O(t) = {p | (t, p) ∈

F}, respectively. Similarly the set of all input and output transitions of a place p is

defined as I(p) = {t | (t, p) ∈ F} and O(p) = {t | (p, t) ∈ F}.

A transition without any input place is called a source transition, and one wi-

thout any output place is called a sink transition. Note that a source transition is

unconditionally enabled, and that the firing of a sink transition consumes tokens,
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but doesn’t produce any. A pair of a place p and a transition t is called a self-loop, if p

is both an input place and an output place of t. A Petri net is said to be pure if it has

no self-loops.

Definition 2.9 (Marking). A marking of a net N = (P, T, F,W,M0) is a function M :

P → N, i.e. a multiset over P . Graphically, a marking is expressed using a respective

number of black tokens in each place. Submarking of a Petri net is the marking of

some of its places.

A state or marking in a Petri net is changed according to the occurrence (firing)

rules:

Definition 2.10 (Occurrence rule). Let N = (P, T, F,W,M0) be a P/T net. A transi-

tion t ∈ T is enabled to occur in a marking M of N iff M(p) ≥ W (p, t) for every place

p ∈ I(t). If a transition t is enabled to occur in a marking M, then its occurrence leads

to the new marking M′ defined by

M′(p) = M(p)−W (p, t) +W (t, p) for every p ∈ P . We write M[t〉 to denote that t may

fire in M, and M[t〉M′ to indicate that the firing of t in M leads to M′. In the same

way, we write M[t〉 to denote that t cannot fire in M.

Example 2.4.

Consider the Petri net N1 = (P, T, F,W,M0), where each component is given as

P = {p1, p2, p3, p4};

T = {t1, t2, t3};

F ={(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p3, t3), (t2, p4), (t3, p4)};

W (p1, t1) = W (t1, p2) = 2,

W (t1, p3) = W (p2, t2) = W (p3, t3) = W (t2, p4) = W (t3, p4) = 1;

M0 = (3, 0, 0, 0) is the initial marking.

Figure 2.5(a) shows the Petri net graph for N1.

Under the initial marking, M0 = (3, 0, 0, 0), only t1 is enabled. Firing of t1 results in a
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Figure 2.5: A simple Petri net and an illustration of transition firing.

new marking, say M1. It follows from the firing that M1 = (1, 2, 1, 0). The new token

distribution of this Petri net is shown in Figure 2.5(b).

Again, in marking M1, both t2 and t3 are enabled. If t2 fires, the new marking, say

M2 = (1, 1, 1, 1). If t3 fires, the new marking, say M3 = (1, 2, 0, 1).

Modelling Power of Petri Nets

The typical characteristics exhibited by the activities in a dynamic event-driven sys-

tem such as concurrency, conflict, synchronization and parallelism can be modelled

effectively by Petri nets.
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Causality: The causal relationships between the occurrences of events can also be

extracted from nets. For example, in Figure 2.6(a), transition t2 can fire only after the

firing of t1. This imposes the precedence constraint “t2 after t1”. Such precedence

constraints are typical of the execution of the parts in a dynamic system.

Conflict: Conflict describes how the occurrence of one event can inhibit the occur-

rence of another in a marking. Transitions t1 and t2 are in conflict in Figure 2.6(b).

The resulting conflict may be resolved in a purely non-deterministic way or in a pro-

babilistic way, by assigning appropriate probabilities to the conflicting transitions.

Concurrency or Parallelism: Two transitions are parallel at a given marking if they

can be fired at the same time, i.e., simultaneously. Parallel activities or concurrency

can be easily expressed in terms of Petri nets. For example, in the Petri net shown in

Figure 2.6(c), the parallel or concurrent activities represented by transitions t2 and t3

begin at the firing of transition tl. In general, two transitions are said to be concur-

rent if they are causally independent, i.e., one transition may fire before or after or

in parallel with the other.

Synchronization: It is quite normal in a dynamic system that an event requires

multiple resources. The resulting synchronization of resources can be captured by

transitions of the type shown in Figure 2.6(d). Here, t1 is enabled only when each of

p1 and p2 has a token. The presence of a token into each of the two places could be

the result of a possibly complex sequence of operations elsewhere in the rest of the

Petri net model. Essentially, transition t1 models the join operation.

Mutually exclusive: Two events are mutually exclusive if they cannot be performed

at the same time. Figure 2.6(e) shows this structure.

Priorities: The classical Petri nets discussed so far have no mechanism to represent

priorities. Such a modelling power can be achieved by introducing an inhibitor arc.

The inhibitor arc connects an input place to a transition, and is pictorially repre-

sented by an arc terminated with a small circle. The presence of an inhibitor arc

connecting an input place to a transition changes the transition enabling condi-

tions. In the presence of the inhibitor arc, a transition is regarded as enabled if each
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Figure 2.6: Petri net primitives to represent system features.

input place, connected to the transition by a normal arc (an arc terminated with an

arrow), contains at least the number of tokens equal to the weight of the arc, and no

tokens are present on each input place connected to the transition by the inhibitor

arc. The transition firing rule is the same for normally connected places. The firing,

however, does not change the marking in the inhibitor arc connected places. A Petri
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net with an inhibitor arc is shown in Figure 2.6(f). t1 is enabled if p1 contains a token,

while t2 is enabled if p2 contains a token and p1 has no token. This gives priority to t1

over t2. The introduction of inhibitor arcs adds the ability to test “zero” (i.e., absence

of tokens in a place) and increases the modelling power of Petri nets to the level of

Turing machines [84].

2.7.2 Petri Net Properties

As a mathematical tool, Petri nets possess a number of properties. These properties,

when interpreted in the context of the modelled system, allow the system designer

to identify the presence or absence of the application domain specific functional

properties of the system under design. Two types of properties can be distinguished,

behavioural and structural ones. Here we provide an overview of some of the most

important properties. Refer to [76, 84] for details.

Behavioural Properties

The behavioural properties are those which depend on the initial state or marking

of a Petri net. They are reachability, safeness, and liveness.

Reachability: In order to find out whether the modelled system can reach a speci-

fic state as a result of a required functional behaviour, it is necessary to find such

a transition firing sequence which would transform a marking M0 to Mn, where

Mn represents the specific state. Reachability is a fundamental basis for studying

the dynamic properties of any system. A marking Mn is reachable from the initial

marking M0 if there is a sequence of firings that transforms M0 to Mn. Further-

more, the firing of a sequence of transitions (ϑ) is defined as ϑ = t1t2 . . . tn such

that M0[t1〉M1[t2〉 . . . [tn〉Mn which is abbreviated as M0[ϑ〉Mn. A marking M is rea-

chable if there exists a firing sequence ϑ such that M0[ϑ〉M. The set of all possible

markings reachable from M0 in a net is denoted by R(M0).
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A marking M in a Petri net is said to be coverable if there exists a marking M′ in

R(M0) such that M′(p) ≤ M(p) for each p in the net.

The reachability problem for Petri net is the problem of finding if a marking M

is reachable from the initial marking M0. In some applications, one may be inter-

ested in the markings of a subset of places and not care about the rest of places in

the net. This leads to a submarking reachability problem which is the problem of

finding if M′ ∈ R(M0), where M′ is any marking whose restriction to a given subset

of places agrees with that of a given marking M.

Safeness: In a Petri net, places are often used to represent information storage areas

in communication and computer systems. It is important to be able to determine

whether proposed control strategies prevent from the overflows of these storage

areas. The Petri net property which helps to identify the existence of overflows in

the modelled system is the concept of boundedness.

A place p is said to be k-bounded if the number of tokens in p is always less than

or equal to k (k is a nonnegative integer number) for every marking M reachable

from the initial marking M0, i.e., M ∈ R(M0). It is safe if it is 1-bounded. A Petri net

(N) is k-bounded (safe) if each place in P is k-bounded (safe).

Liveness: Formally a Petri net with a given marking is said to be in deadlock if and

only if no transition is enabled in the marking. A Petri net where no deadlock can

occur starting from a given marking is said to be live. This implies that for any rea-

chable marking M, it is ultimately possible to fire any transition in the net by pro-

gressing through some firing sequence.

Structural Properties

The structural properties, on the other hand, do not depend on the initial marking of

a Petri net. They depend on the topology or net structure of a Petri net. Thus, these

properties may be characterised in terms of the incidence matrix. The important
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structural properties of a Petri net include conservativeness, consistency, traps and

siphons.

Conservativeness: A Petri net is strictly conservative if the total number of tokens is

constant in each marking of R(M0). A subset of places form a place-invariant (or

P-invariant) if it is strictly conservative.

Consistency: A Petri net N is said to be (partially) consistent if there exists a firing

sequence ϑ from M0 back to M0, such that every (some) transition occurs at least

once in ϑ. The set of all transitions in ϑ form transition-invariant (or T-invariant).

Siphons and Traps: A siphon is a set R of places such that ∀p ∈ R, I(p) ⊆ O(p)

while conversely, a trap is a set S of places such that ∀p ∈ S, O(p) ⊆ I(p), where I(p)

(O(p)) denotes the set of input (respectively, output) transitions of place p. i.e. every

transition having an output place in R has an input place in R and every transition

having an input place in S has an output place in S.

A relevant property of a siphon is that once it is token-free under some marking

M (it is not marked by M), then, it remains token-free under all reachable mar-

kings from M. Conversely, a relevant property of a trap is that once one of its places

is marked under some marking, then the trap remains marked under all reachable

markings from M. As the definitions of siphons and traps are symmetrical, the pro-

perties of siphons also hold also for traps.

A minimal siphon is a siphon which doesn’t contain any other siphon. Whereas,

basis siphon is a siphon, that couldn’t be obtained by the union of other siphons.

2.7.3 Analysis of Petri Nets

The success of any model depends on two factors: its modelling power and its de-

cision power. Modelling power refers to the ability to correctly represent the system

to be modelled; decision power refers to the ability to analyse the model and deter-

mine properties of the modelled system. The modelling power of Petri nets has been
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examined in the previous sections, and in this section we take into consideration the

analysis techniques of Petri nets.

There are two common approaches to Petri net analysis: reachability analysis

and the matrix-equation approach. The first approach involves the enumeration of

all reachable markings and is very useful in studying the behavioural properties of

the system. The matrix equations technique is powerful for analysing the structural

properties of the system.

Reachability Analysis: Reachability analysis is conducted through the construction

of the coverability tree. A Coverability tree is a tree representation of all possible

markings with initial marking as the root node and nodes as the markings reachable

from M0 and arcs represent the transition firing. Given a Petri net N , from its initial

marking M0, we can obtain as many “new” markings as the number of the enabled

transitions. From each new marking, we can again reach more markings. Repeating

the procedure over and over results in a tree representation of the markings.

The above tree representation, however, will grow infinitely large if the net is

unbounded. To keep the tree finite, we introduce a special symbol ω, which can be

thought of as “infinity”. It has the properties that for each integer n, ω > n, ω+n = ω

and ω ≥ ω.

For a bounded Petri net, the coverability tree is called the reachability tree since

it contains all possible reachable markings. It defines a net’s state space (i.e., the

set of reachable states). Merging the same nodes in a reachability tree results in a

reachability graph.

Consider the Petri net shown in Figure 2.5(a). All reachable markings are: M0 =

(3, 0, 0, 0), M1 = (1, 2, 1, 0), M2 = (1, 1, 1, 1), M3 = (1, 2, 0, 1), M4 = (1, 1, 0, 2),

M5 = (1, 0, 1, 2), and M6 = (1, 0, 0, 3). The reachability tree of this Petri net is shown

in Figure 2.7(a), and the reachability graph is shown in Figure 2.7(b).

Matrix Equation Approach: Structural properties of Petri nets are those that depend

only on their topological structure and are independent of the initial marking. Thus,
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Figure 2.7: Reachability analysis.

these properties may be characterised in terms of the incidence matrix A. For a Pe-

tri net N with n transitions and m places, the incidence matrix A = [aij ] is an n ×m

matrix of integers and its typical entry is given by

aij = aij
+ − aij

−

where aij
+ = W (ti, pj) is the weight of the arc from transition ti to its output place pj

and aij
− = W (pj, ti) is the weight of the arc to transition ti from its input place pj .

It is easy to see from the transition firing rule that aij−, aij+, aij respectively represent

the number of tokens removed, added, and changed in place pj when transition ti

fires once. Transition ti is enabled at a marking M if and only if

aij
− ≤ M(pj), j = 1, 2, . . . , m. In writing matrix equations, we write a marking Mk as

an m× 1 column vector. The jth entry of Mk denotes the number of tokens in place

pj immediately after the kth firing in some firing sequence. The kth firing or control

vector uk is an n× 1 column vector of n− 1 zeroes and one nonzero entry, a 1 in the
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ith position indicating that transition ti fires at the kth firing. Since the ith row of

the incidence matrix A denotes the change of the marking as the result of firing of

transition ti, we can write the following state equation for a Petri net:

Mk = Mk−1 + ATuk, k = 1, 2, . . .

Suppose that a destination marking Mn is reachable from M0 through a firing se-

quence {u1, u2, . . . , un}.

Writing the state equation for k = 1, 2, . . . , d and summing them, we obtain

Mn = M0 + AT
∑n

k=1 uk

which can be rewritten as

ATX = ∆M

where ∆M = Mn −M0 and X =
∑n

k=1 uk. Here X is an n× 1 column vector of non

negative integers and is called the firing count vector. The ith entry of X denotes the

number of times that transition i must fire to transform M0 to Mn.

The state equation is illustrated below, for the Petri net shown in Figure 2.5(a), where

the transition t1 fires to reach next marking M1 = (1, 2, 1, 0)T from M0 = (3, 0, 0, 0)T .
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An n-vector X of positive (non negative) integers is T -invariant iff ATX = 0, X 6= 0.

An m-vector Y is an P -invariant iff MTY = M0
TY for any fixed initial marking M0

and any M ∈ R(M0).

2.7.4 High Level Petri Nets

Petri nets have been used to describe a wide range of systems since their invention

in 1962. A problem with Petri nets is the explosion of the number of elements of

their graphical form when they are used to describe complex systems. High-level

Petri nets were developed to overcome this problem by introducing higher-level
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concepts, such as the use of complex structured data as tokens, arc annotations,

transition functions (guards) and time delays to places, transitions or arcs etc. The

term high-level Petri net is used for many Petri net formalisms that extend the basic

P/T net formalism; this includes coloured Petri nets, timed Petri nets, and all other

extensions sketched in this subsection. In the use of Petri net for modelling real sys-

tems several authors have found convenient to use all or some of these concepts

and introduce special constructs either for making the model representation more

compact in a given application or for extending the modelling power of the Petri net

formalism. Here we discuss some important structural components of the high level

Petri nets.

Structural Components

Labelled tokens: The common characteristic of these models, usually referred to as

high level Petri net, is that the position of any single token can be tracked in the Petri

net. Two labelling techniques have been originally proposed: the technique of co-

louring tokens (coloured Petri net introduced by Jensen [54]) and the technique of

assigning to each token a predicate (Predicate/Transition net introduced by Genrich

and Lautenbach [27]).

Arc annotations: Arcs are inscribed with expressions which may comprise constants,

variables (e.g., x, y) and function images (e.g., f(x)). The variables are typed. The ex-

pressions are evaluated by assigning values to each of the variables. When an arc’s

expression is evaluated, it must result in a collection of items taken from the type

of the arc’s place. The collection may have repetitions. The arcs are also inscribed

with marking dependent expressions of various types, where the number of tokens

removed from a place, or added to a place varies according to the marking of the

Petri net [20].

Guard functions or Conditioning functions: More complex logical interactions bet-

ween primitive elements of a Petri net can be considered by introducing logical
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conditioning functions. Given a marking M, a Petri net transition is enabled if, be-

sides the normal enabling requirements (including inhibitor arcs and priorities), the

conditioning function is true. The conditioning functions can be very effective in re-

ducing the graphical complexity of a Petri net. The coloured Petri nets in [54] uses

guard functions and arc annotations.

Time: The need for including timing variables in the models of various types of dy-

namic systems is apparent since these systems are real time in nature. There are

many ways to introduce time into Petri net models. Time can be associated with

places, transitions, or arcs. In most timed Petri net models, transitions determine

time delays. In only a few models, time delays are determined by places and/or arcs.

Independent of the choice where to put the delay (i.e., transitions, places, or arcs),

several types of delays can be distinguished. Petri net models by authors such as

Ramchandani [90], Sifakis [95] use deterministic delays, i.e., the delay assigned to

a transition, place, or arc is fixed. Some authors such as Molloy [75] use stochastic

delays, i.e. time variables are associated with transitions. These are the two most

widely used timed Petri nets.

2.7.5 Petri Net Languages

In 1976, Hack [41] published a report on Petri net languages where he stated that in

many applications of Petri nets it is the set of firing sequences generated by the net

that is of prime importance. At this time it was proposed to treat Petri nets like an au-

tomaton whose states are the markings of the Petri net, and whose state-transition

function expresses how and when transitions of the Petri net can fire. This report

was the start of an extensive research effort in Petri net languages, which resulted in

the definition of a wide range of Petri net language families each having their own

properties.

This subsection introduces the basic concepts of Petri net languages, for a more
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elaborate discussion the reader is referred to [41, 83, 84]. Basically, a Petri Net lan-

guage is generated by a labelled Petri net K = (V,N , ζ, F ) where

• V is an alphabet.

• N = (P, T, F,W,M0) is a P/T Net.

• ζ : T → V ∪ {λ} defines the symbol-wise labelling for every transition. A tran-

sition t ∈ T is called λ-transition, if ζ(t) = λ.

• H is a finite set of final markings.

Definition 2.11. Let K = (V,N , ζ, H), N = (P, T, F,W,M0), be a labelled Petri net.

For any two markings M, M′ and transition t ∈ T , we write M
ζ(t)
=⇒ M′ if M[t〉M′.

This is recursively generalized to (labelled) firing sequences: Let ϑ ∈ T ∗ and t ∈ T and

M1 and M3 are any two markings then M1
ζ(ϑ)ζ(t)
=⇒ M3 iff ∃ a marking M2 such that

M1[ϑ〉M2[t〉M3.

In addition, let M
λ

=⇒ M for any marking M.

Four types of Petri net languages have been defined in terms of the definition of final

markings [83]:

• According to Hack, the L-type Petri net language is

L(K) = {ζ(ϑ) ∈ V ∗ | ϑ ∈ T ∗, ∃M ∈ H,M0[ϑ〉M}

the T-type Petri net language is:

T (K) = {ζ(ϑ) ∈ V ∗ | ϑ ∈ T ∗,M0[ϑ〉M, ∀t ∈ T,M[t〉}

the P-type Petri net language is:

P (K) = {ζ(ϑ) ∈ V ∗ | ϑ ∈ T ∗,M0[ϑ〉}

the G-type Petri net language is:

G(K) = {ζ(ϑ) ∈ V ∗ | ϑ ∈ T ∗,M0[ϑ〉M,M′ ≥ M for some M′ ∈ H}

L(K) is called λ-free labelled, iff ζ(t) 6= λ for each t ∈ T .
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(a) A Petri net with initial marking
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Figure 2.8: A labelled Petri net.

As an example, consider the Petri net of Figure 2.8(b) which is a labelled version of

the net of Figure 2.8(a).

Labelling function ζ for the transitions is defined as

ζ(t1) = a, ζ(t3) = b,

ζ(t2) = c, ζ(t4) = d.

For a final state set H = {(0, 0, 1, 0)},

the L-type language is {ancbn | n ≥ 0},

the G-type language is {amcbn | m ≥ n ≥ 0},

the T -type language is {amcbnd | m ≥ n ≥ 0}, and

the P -type language is {am | m ≥ 0}∪

{amcbn | m ≥ n ≥ 0} ∪ {amcbnd | m ≥ n ≥ 0}.

2.7.6 Parallel Petri Net Semantics

The execution mode considered so far in the Petri nets is the sequential mode. This

mode leads to interleaving semantics of Petri nets. In this mode only one of the en-

abled transitions is executed in each step. Classes of languages that reflect an inter-

leaving semantics are usually defined by Petri nets as sets of sequences of labelled or

unlabelled transitions as discussed in the previous subsection. Petri nets are widely
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used as a model of concurrency, which allows to represent the occurrence of inde-

pendent events. They can be as well a model of parallelism, where the simultaneity

of the events is more important, when we consider their step sequence semantics in

which an execution is represented by a sequence of steps each of them being the

simultaneous occurrences of transitions [14, 53].

Steps in Petri nets are sets of transitions that fire independently and parallel at

the same time. The change to the marking of the net when a step occurs is given by

the sum of all the changes that occur for each transition. As in [53], if every transition

occurs only once, like in elementary net systems, thus having single usage within the

step, then we use the naming step. A multiset of transition, on the other hand, may

contain more than one occurrence of a transition. In this case, a transition can fire

several times in one step. Since such multisets of transitions can be seen as the sum

of several single steps, they will shortly be called multi-steps.

A step of transitions U is a maximal step at a marking M, if M[U〉 and there is

no transition t′ such that M[U + t′〉. A Petri net system N with maximal strategy is

such that for each markings M and M′ if there is a step U such that M[U〉M′, then

U is a maximal step and we write as M[U〉mM′. In [13], it is proved that P/T systems

with maximal strategy can perform the test for zero and so the computational power

is extended up to the power of Turing machines.

The notions of steps and maximal steps are recursively generalized to step se-

quences and maximal step sequences. A (maximal) step sequence ρ is halting if

M0[ρ〉Mn and no non-empty (maximal) step is fireable at Mn. A computation of a

Petri net N is a halting (maximal) step sequences starting from the initial marking

and every marking appearing in such a sequence is called reachable.

Burkhard [14] has defined languages using Petri net steps by writing down all

permutations of the transitions that form such a step. He thereby defines the Petri

net language in an interleaving semantics, which does not directly reflect the parallel

use of transition firings.
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In [53], authors allowed only (multi-)sets of transitions to form a (multi-) step,

if they all share the same label. In a sequence of (multi-) steps, each of them contri-

butes its label once to the generated word. Through different firing modes that allow

multiple use of transitions in a single multi-step, they obtained a hierarchy of fami-

lies of languages.

In the thesis, we consider parallel Petri net semantics for translating SN P sys-

tems into Petri nets. Instead of labelling transitions, we label the (maximal) steps.

The halting sequences of (maximal) steps are considered for the languages genera-

ted by Petri nets.

2.7.7 Simulation of Petri Nets

Petri nets are one of well established tools in both theoretical analysis and practi-

cal modelling of concurrent systems as well as approximate reasoning. However,

practical usage of Petri nets is increased by the availability of large number of com-

puter tools which would allow to handle large and complex nets in a comfortable

way. Four things are essential for modelling and analyzing by means of Petri nets

- capability to represent the required features of the systems under design, a good

editor, a simulator and a powerful analysis engine. Analysis shows the presence of

undesirable properties. Petri net simulation is indeed a convenient and straight-

forward yet effective approach for engineers to validate the desired properties of a

discrete event system. A list of Petri net simulation tools along with feature des-

criptions can be found in the Petri nets world website: http://www.informatik.uni-

hamburg.de/TGI/PetriNets/tools/. The Petri Net Markup Language (PNML) is a

standard XML based interchange format for Petri nets. In order to support different

versions of Petri nets and, in particular, future versions of Petri nets, PNML allows

the definition of Petri net types. It helps to easily exchange Petri nets between dif-

ferent tools. This would allow Petri net tool users in geographically distributed loca-

tions to take advantage of newly developed facilities on other tools, for example, for
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analysis, simulation or implementation.

2.7.8 An Overview of PNetLab

PNetLab 4.0 is a Java based tool that provides interactive simulation, analysis, and

supervision of Petri nets. The tool allows the Petri nets in Petri Net Markup Lan-

guage transfer format. The simulation engine has been developed in C++, it works

in cooperation with a graphical user interface and provides interactive simulation

with graphical animation of the model and movement of the tokens, step-by-step

and off-line simulations, forward and backward time progression. It allows drawing

and simulation of coloured Petri nets, P/T nets, timed/untimed models by means of

a Java graphical user interface.

For P/T nets without guard, the tool provides T-invariants, P-invariants, siphons,

traps, pre-incidence, post-incidence, and incidence matrices, and coverability tree.

PNetLab allows the integration of a PN/CPN model with a standard C/C++ control

algorithm thus allowing closed-loop analysis and simulation of supervised systems.

It is also interfaced with Xpress by Dask Optimization, a tool of linear programming.

It allows to build user defined arc (guard) functions by combining the built-in func-

tions and several mathematical functions in accordance with the C/C++ syntax.

The syntax of different built-in guard functions used in the thesis are as follows:

• all(i): It selects all the tokens of the place pi.

• ntoken(i): It returns the number of tokens of the place pi.

PNetLab allows the firing of multiple transitions in a single step and resolves conflicts.

It manages conflicts by using the following resolution policies:

1. Predefined Scheduling order: PNetLab assigns a static priority to the transition

in conflict, based on the order in which they have been drawn;
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2. Same firing rate: transition in conflict relation have the same firing probability;

3. Stochastic firing rate: transition in conflict relation have a firing probability

defined a priori by the user;

In the thesis, we used the same firing rate option to resolve the conflicts during

the execution of the Petri net. In each step, the tool allows only one transition to

fire from each input place which makes the simulation of SN P systems easier (since

SN P system allows only one rule to fire from each neuron in each step). A detailed

manual about PNetLab can be found in [3].

2.8 P systems and Petri Nets

In order to study the behavioural properties of P systems, several authors propo-

sed procedures to model them with Petri nets. Since multiset calculus is basic for

membrane systems and also for computing the token distribution in Petri nets [16],

some connections have already been established. Some authors have proposed to

interpret reaction rules of membrane systems using Petri net transitions, e.g., [7, 89]

A key structural notion is that of a membrane by which a system is divided into

compartments where chemical reactions can take place. These reactions transform

multisets of objects present in the compartments into new objects, possibly trans-

ferring objects to neighbouring compartments, including the environment. Conse-

quently, the behavioural aspects of membrane systems are based on sets of reaction

rules defined for each compartment. Places together with their markings indicate

the local availability of resources and thus can be used to represent objects in spe-

cific compartments, whereas transitions are actions which can occur depending on

local conditions related to the availability of resources and thus can be used to re-

present reaction rules associated with specific compartments. When a transition

occurs it consumes resources from its input places and produces items in its output
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places thus mimicking the effect of a reaction rule. Every object can be represented

as a place in the P/T net, and the number of tokens in this place denotes the number

of occurrences of this object.

r

2

t1t2

1

2
aabb

r :ab       bcout

bbc 

r' : cb     cc

(a,1) 

(c,2) 

(b,2) (a,2) 

(c,1) (b,1) 

r'

(a) (b) 

Figure 2.9: A membrane system (a), and the corresponding Petri net (b).

The basic idea of modelling a membrane system using a Petri net can be explai-

ned through an example shown in Figure 2.9. The system depicted there consists of

two nested membranes (the inner membrane 2 and the outer membrane 1), two

rules (rule r associated with the compartment c2 inside the inner membrane, and

rule r′ associated with the compartment c1 surrounded by membrane 1, i.e., in-

between the two membranes), and three symbols denoting objects (a, b, and c). Ini-

tially, the compartment c2 contains two copies of both a and b, and c1 contains two

copies of b and a single copy of c. To model this membrane system using a Petri net,

we introduce a separate place (x, j) for each kind of object x and compartment cj .

As usual, places are drawn as circles with the number of the currently associated re-

sources represented as tokens (small black dots). Every rule can be represented by

a transition. For example, in compartment c2, the rule r : ab → bcout, can be descri-

bed by a transition tr2. Transitions are connected to places by weighted directed arcs,

and if no weight is shown it is by default equal to 1. If the transformation described
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by a rule r of compartment cj consumes k copies of object x from compartment cj ,

then we introduce a k weighted arc from place (x, j) to transition tri , and similarly for

objects produced by transformations.

Finally, assuming that initially compartment cj contained n copies of object x,

we introduce n tokens into place (x, j). The resulting Petri net is depicted in Fi-

gure 2.9(b).

In order to represent the compartmentisation of membrane systems some au-

thors introduced a novel extension of the basic net model of P/T nets, by adding

the notion of located transitions and locally maximally concurrent executions of co-

located transitions [60]. In these Petri nets, called P/T nets with localities (PTL-nets),

each transition has a location, similar to the distribution of the reaction rules over

the compartments in a membrane system. The exact mechanism for achieving this

is to introduce a partition of the set of all transitions, using a locality mapping func-

tion. Intuitively, two transitions for which the locality function returns the same

value will be co-located. It has been shown how (sequences of) computation steps

of membrane systems are faithfully reflected in the maximally concurrent step se-

quence semantics of their corresponding PTL-nets. In the P systems area maximal

step semantics correspond to maximal multi-step semantics discussed in the thesis.

Note that for maximal concurrency in a P/T net, localities are not relevant, as

the net supports the local aspects of resources consumed and produced by transi-

tions. Localities are primarily a modelling tool in that co-located transitions cor-

respond to reaction rules in a single compartment and, e.g., allow to identify the

active parts of a system in the course of a computation. However, transitions with

associated localities can be used to restrict synchronicity to certain locations within

a system: within each clock tick, for each currently active locality, as many transi-

tions belonging to this locality as possible are executed. Thus the PTL-net model

and its locally maximal concurrent step semantics make it possible to investigate

membrane systems working subject to the natural assumption that synchronicity is

76



Chapter 2. Preliminaries

restricted to the compartments of the system as delineated by the membranes.

To model the membrane systems with inhibitors and promoters of reactions

[6], PTL-nets are extended with inhibitor and activator arcs [57]. In [58], dynamic

membrane systems with dissolving and thickening rules[29] are modelled directly

and soundly in Petri nets with localities and supporting activator and inhibitor arcs

[58]. Inhibitor arcs are the arcs, where the enabling of an action (transition) can

depend on some specific local states (or places) being unmarked and activator (or

read) arcs are the arcs, where the enabling of an action (transition) can depend on

some specific local states (or places) being marked by more tokens than just the

number of those consumed when the transition is fired. Range arcs combine (and

subsume) the distinctive features of inhibitor and activator arcs, and each such arc

provides a means of specifying a range (a finite or infinite interval of non negative

integers) for the number of tokens in a place which makes enabling of a given tran-

sition possible [56].

The major limitations of these translations is that these new variants of Petri

nets lack of tools to simulate and study the behavioural properties of P systems.

With these prerequisites we now move on to the main portions of the thesis.
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Computability of Spiking Neural P

Systems with Anti-Spikes

Because of the use of two types of objects, spiking neural P systems with anti-spikes

can encode the binary digits in a natural way and hence represent the formal mo-

dels more efficiently and naturally. They can also generate more languages than

the standard SN P systems. This chapter deals with the computing power of spi-

king neural P system with anti-spikes. We discuss the efficiency of the systems as

language generators in Section 3.2. It is demonstrated in Section 3.3 that, as trans-

ducers, spiking neural P systems with anti-spikes can simulate any Boolean circuit

and also computing devices such as finite automata. In Section 3.4, we investigate

how the use of anti-spikes increase the efficiency to solve the satisfiability problem

in a non-deterministic way.

3.1 Introduction

The power of different variants of SN P systems as language generators are inves-

tigated in [18, 19, 34]. It was shown in [18] that some finite languages cannot be
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generated using simple SN P systems but it was proved in [19] that SN P systems

with extended rules can generate the finite languages. SN PA system uses standard

rules, adding one symbol at a time, but allows non-determinism between its rules

like ac → a and ac → a, thus helps to generate languages that cannot be genera-

ted by simple SN P systems. In this chapter we address the power of SN PA systems

as language generators, in particular, by considering bounded SN PA systems and

comparing the languages generated with the results obtained in [48] for standard

SN P systems.

Standard spiking neural P systems are used to simulate arithmetic and logic

operations where the presence of spike is encoded as 1 and absence of spike as 0

and the negative integers were not considered [73]. The ability of SN P systems to

efficiently simulate Boolean circuits are studied [52], since this simulation, enriched

with some “memory modules" (given in the form of some SN P sub-systems), may

constitute an alternative proof of the computational completeness of the model.

The Boolean value 1 is encoded in the SN P system by two spikes, hence a2, while

0 is encoded as one spike. As the system has only one input neuron, the number of

spikes equal to the sum of the inputs, is introduced into the neuron. For example to

compute the logical AND or OR operation between 1 and 0 (or 0 and 1) three spikes

(two spikes for 1 and one spike for 0) are introduced into the input neuron and four

spikes are introduced for the case 11.

In this chapter we use SN P systems with anti-spikes to simulate logic gates,

with the anti-spikes and spikes encoding the Boolean values 0 and 1 in the natural

way. We design SN P systems with anti-spikes simulating the operations of AND, OR,

NOT, NAND and NOR gates. The output of the system is 0 (hence false) if the output

neuron sends out an anti-spike and 1 (true) if a spike is sent to the environment.

Hence we present two ways to simulate any Boolean circuit, one is using fundamen-

tal gates and other using universal gates. Furthermore they are used to simulate

computational devices such as finite state transducers.
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Using SN P system with anti-spikes, we can perform the operations on nega-

tive numbers also. The input to the systems is a binary sequence of spikes and

anti-spikes which encodes the digits 1 and 0 respectively, of a binary number. They

can represent the negative numbers in 2’s complement form, thereby simulating the

arithmetic operations on negative numbers. In this chapter we also simulate three

arithmetic operations - 2’s complement, addition and subtraction.

Finally we show how they can be used for solving the SAT problem. In [66],

a uniform solution to the SAT (in CNF, with n variables and m clauses) is provided

using standard SN P systems without delay having 3n2 + 8m+ 5 neurons, providing

the solution in a number of steps which is linear in the number of variables. Two

bits were used to code each literal of a clause, hence the computation cannot end

in less than 2n steps. Here we use only one bit to code each literal of clause Cj. 1

indicates the case when xi appears in Cj, 0 indicates the case when ¬xi appears in

Cj and λ (empty) indicates the absence of xi in the clause Cj . So n bits are needed to

code any clause. Using SN PA systems the number of steps can be reduced to half.

These systems only requires 3m+ 2 neurons.

3.2 SN PA Systems as Language Generators

The following observations show that some finite languages and regular languages

which cannot be generated using simple bounded SN P systems proved in [18] can

be generated using bounded SN PA systems with one neuron. Here B = {0, 1} is the

binary set. B+ is the set of all binary strings formed using the alphabet B.

We recall that complexity of an SN PA system Π is described as

LSNPAm(rulek, consp1,p2, forgq1,q2), the family of languages L(Π), generated by sys-

tems Π with at most m neurons, each neuron having at most k rules, each of the spi-

king rules consuming at most p1 spikes and p2 anti-spikes and each forgetting rule

removing at most q1 spikes and q2 anti-spikes. As usual a parameter m, k, p1, p2, q1, q2
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is replaced with ∗ if it is not bounded. If the underlying SN PA systems are finite,

we denote the corresponding families of languages by LFSNPAm(rulek, consp1,p2,

forgq1,q2).

3.2.1 Finite Binary Languages

Observation 1 The simplest language L0,1 = {0, 1} is generated by bounded SN P sys-

tem with anti-spikes.

SN PA system Π1=({a, a}, σ1=(1, {a → a, a → a}), ∅, 1) generates the set L0,1 = {0, 1}.

Observation 2 Languages of the form Lk,j = {0k, 10j}, for k ≥ 1, j ≥ 0 can be genera-

ted by bounded SN PA system.

We give an SN PA system Π2 generatingLk,j = {0k, 10j}. Π2=({a, a}, σ1=(j+k, R2), ∅, 1).

where R2 = {aj+k/ak → a, aj+k/aj+1 → a} ∪ {al/a → a | 1 ≤ l ≤ j + k − 1}.

Initially the output neuron σ1 has j + k spikes and there is a non-determinism

between its rules aj+k/ak → a and aj+k/aj+1 → a. If it uses the first rule, a spike

is out and is left with j spikes. Then in the next j steps, the neuron uses the rule

a → a, emitting j anti-spikes, thus generating the string 10j . If the neuron uses later

one then it emits an anti-spikes and is left with k − 1 spikes, which are sent out as

anti-spikes by the output neuron, thus generating the string 0k. So L(Π2)=Lk,j.

Theorem 3.1. If L = {x}, x ∈ B+, |x|1 = r ≥ 0, then L ∈ LFSNPA1(rule|x|, cons1,0,

forg0,0), where |x| is the length of the string x and |x|1 is the number of occurrences of

symbol 1 in x.

Proof. Let us consider the string x = 0n110n2 . . . 0nr10nr+1, for nj ≥ 0, 1 ≤ j ≤ r + 1 (if

x = 0n1, then r = 0). The SN P system from Figure 3.1 generates the string x. The out-

put neuron initially contains |x| spikes. The second set of rules a|x|−(
∑j

i=1
ni+j−1)/a →

a sends a spike(1) at
∑j

i=1 ni + j − 1, 1 ≤ j ≤ r places where as the first set of rules

allows an anti-spike to be sent out at other places. Depending upon the number of
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spikes available, a unique rule is used in each step to generate either spike or anti-

spike, resulting |x| rules. In the case r = 0, the system cannot use the second set of

1

output 

Figure 3.1: SN PA system generating a singleton set

rules as |x| = n1. The first set of rules are used for j = 1 and k = 1 to n1, outputting

the string 0n1 .

Bounded SN P systems with standard rules cannot generate all binary finite

languages, but with anti-spikes help in this respect.

Theorem 3.2. LFSNPA1(rule∗, cons∗,∗, forg∗,∗) = BFIN , BFIN is the family of fi-

nite languages over binary alphabet.

Proof. The inclusion LFSNPA1(rule∗, cons∗,∗, forg∗,∗) ⊆ BFIN can be easily pro-

ved. In each step, the number of spikes present in a system with only one neuron

decreases by at least one, hence any computation lasts at most as many steps as

the number of spikes/anti-spikes present in the system at the beginning. Thus, the

generated strings have a bounded length.

To prove the opposite inclusion BFIN ⊆ LFSNPA1(rule∗, cons∗,∗, forg∗,∗), let

us take a finite language, L = {x1, x2, . . . , xm} ⊆ B∗, m ≥ 1, and let xj = 0sj,110sj,2 . . .

10sj,rj+1 for rj ≥ 0, sj,l ≥ 0, 1 ≤ l ≤ rj + 1, 1 ≤ j ≤ m.

Let | xj |= nj, 1 ≤ j ≤ m and αj =
∑j

i=1 ni, 1 ≤ j ≤ m

An SN PA system which generates the language L is the following.
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Π=({a, a}, σ1, ∅, 1), σ1 = (αm, R1)

R1=({aαm/aαm−(αj−1) → b | b = a if sj,1 ≥ 1 and b = a if sj,1 = 0, 1 ≤ j ≤ m}

∪{aαj−1−(
∑l

i=1
si,l+l−k−1/a → a | sj,1 ≥ 2, sj,l ≥ 1, 2 ≤ l ≤ rj + 1, 1 ≤ k ≤ sj,l, 1 ≤ j ≤ m}

∪{aαj−1−(
∑l

i=1 si,l+l−1/a → a | 1 ≤ l ≤ rj , 1 ≤ j ≤ m} ∪{aαj−1 → λ | 2 ≤ j ≤ m}).

Initially, only a rule aαm/aαm−(αj−1) → b can be used, and in this way it non-

deterministically choose the string xj to generate and output spike/anti-spike de-

pending on the first bit of xj . The neuron is left with αj − 1 spikes. The rules for

generating the remaining bits are similar to rules of SN PA system in Theorem 3.1.

After generating xj , αj−1 spikes remain in the neuron, and are forgotten using the

rule aαj−1 → λ.

We observe that the rules which are used in the generation of a string xj cannot

be used in the generation of a string xk with k 6= j.

3.2.2 Regular Binary Languages

We now pass to investigating the relationships with the family of regular languages

over the binary alphabet. It was proved in [48] that 0∗1 cannot be generated by any

bounded SN P system. But with SN PA system we can generate the language 0∗1.

Observation 3. The language 0∗1 can be generated by a bounded SN PA system.

Consider the SN PA system Π4, which is formally denoted as

Π4=(O, σ1, σ2, syn , 2), with

σ1 = (-1, {a → a }), σ2 = (2, {a2/a → a , a2 → a} ), syn={(1, 2), (2, 1)}.

The graphical representation of the SN PA system Π4 is shown in Figure 2.4 of Chap-

ter 2, which generates the language 0∗1.

Theorem 3.3. LFSNPA∗(rule∗, cons∗,∗, forg∗,∗) = BREG, BREG is the family of re-

gular binary languages.

Proof. The inclusion LFSNPA∗(rule∗, cons∗,∗, forg∗,∗) ⊆ BREG follows from the
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fact that for each finite SN PA system, we can construct the corresponding transition

diagram associated with the computations of the SN PA system and then interpret

it as the transition diagram of a finite automaton (with an arc labelled by 1 when

the output neuron sends a spike and labelled by 0 when the output neuron sends an

anti-spike).

To prove the opposite inclusion that if L ⊆ B∗, L ∈ BREG, then

L ∈ LFSNPA∗(rule∗, cons∗,∗, forg∗,∗), we consider the right-linear grammar G =

(N, T, S, P ) such that L = L(G) and having the following properties.

i. N = {A1, A2, . . . , An}, n ≥ 1 and S = An.

ii. The rules in P are of the form Ai → 0Aj | 1Aj | 0 | 1 where i, j ∈ {1, 2, . . . , n}.

We construct the following SN PA system:

Π=({a, a}, σ1, σ2, . . . , σn+1, syn , n+ 1), with

σi = (1, {a → a, a → a }), i = 1, 2, . . . , n,

σn+1 = (3n, {a2n+i/an+i−j → b′ | Ai → bAj ∈ P} ∪ {a2n+i → b′ | Ai → b ∈ P}) where

b ∈ {0, 1} and b′ = a if b = 1 and b′ = a if b = 0,

syn={(1, n+ 1), (n+ 1, 1), (2, n+ 1), (n+ 1, 2), . . . , (n, n+ 1), (n+ 1, n)}.

For easier understandability, the system is also given graphically in Figure 3.2. The

output neuron σn+1 fires in the first step by a rule a2n−j → b′ ( or a3n → b′) associated

with a rule An → bAj (or An → b) from P , produces either a spike or an anti-spike

depending upon whether b = 1 or b = 0 and receives n spikes from its neighbouringn

neurons. The neurons σ1 to σn are meant to continuously load the neuron n+1 with

n spikes, provided that they receive spike or an anti-spike from the output neuron.

Assume in some step t, the rule a2n+i/an+i−j → b′, for Ai → bAj or a2n+i → b′ for

Ai → b is used, for some 1 ≤ i ≤ n, and n spikes are received from other neurons.

If the first rule is used, then n + i − j spikes are consumed and n + j spikes re-

main in the output neuron. Then in the step t + 1, we have 2n + j spikes in neuron
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σn+1, and a rule for Aj → bAl or Aj → b can be used. In this step also the output neu-

ron receives n spikes from its neighbouring neurons. In this way, the computation

continues, unless the second rule is used.
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.  .  .  .  .  .  .  . 
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Figure 3.2: SN PA system generating binary regular languages

If the second rule is used, then all spikes of the output neuron are consumed

sending a spike or an anti-spike to other n neurons and n spikes are received from

them. Then in the next step the output neuron again receives n spikes, but no rule

is used, so no spike is produced. So it stops loading the other n neurons and the

computation halts. In this way, all strings in L can be generated.

3.2.3 Going Beyond Regular Languages

The power of SN PA systems goes beyond the regular languages. We first illustrate

this assertion with an example from Figure 3.3, that generates the language L(Π) =

{0n1n | n ≥ 1}; observe that the system is not finite due to the rule (aa)+a/a2 → a in

the σ3 and the output is delayed for two steps.

The reader can check that in n ≥ 0 steps when σ2 uses the first rule a2/a → a,

the neuron σ3 accumulates 2n + 2 spikes and σ1 sends a spikes to σ4, which in turn

sends a spike to output neuron, which uses its first rule and sends an anti-spike(0)
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to environment. At any step n ≥ 1, when the neuron σ2 uses the rule a2 → a, the

spike from σ1 and anti-spike from neuron σ2 will annihilate each other in neuron σ3,

remaining again with 2n+2 spikes. Neuron σ2 receives a spike from neuron σ5 where

as σ5 receives an anti-spike from neuron σ2. In the same step spike from σ1 is also

sent to σ4. In the n + 1 step neurons σ1 and σ5 forget their anti-spikes received from

σ2. Neuron σ4 sends a spike to neuron σ6. Neuron σ2 uses its third rule a → a by

sending an anti-spike to neurons σ3 and σ5. Neuron σ3 is left with 2n + 1 spikes and

σ5 with an anti-spike which will be forgotten in the next step. In the n + 2 step, the

neuron σ6 outputs a spike (that means total of n+1 spikes) and neuron σ3 starts firing

the as number spikes present becomes odd, and the rule (aa)+a/a2 → a repeatedly

used until one spike remains; this last spike is used by the second rule a → a. These

n + 1 anti-spikes are converted into spikes and sent to environment by the output

neuron σ6.
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Figure 3.3: An SN P system with anti-spikes generating a context free language

Actually, much more complex languages can be generated by SN PA systems.
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3.2.4 Going Beyond Context Free Languages

Actually, much more complex languages can be generated by SN PA systems. The

previous construction can be extended to non-context free languages like

{0n1n0n/n ≥ 1}.

Theorem 3.4. Context sensitive languages can be generated by SN PA systems.

Proof. The SN PA system from Figure 3.4 generates the language {0n1n0n/n ≥ 1}.
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Figure 3.4: An SN PA system for the context sensitive language {0n1n0n/n ≥ 1}

In n ≥ 0 steps when neuron σ2 uses the first rule a2/a → a, the neurons σ4 and

σ5 accumulates 2n + 4 and 2n + 2 spikes respectively. Neuron σ1 sends a spikes to

neuron σ3, which in turn sends a spike to output neuron, which uses its first rule

and sends an anti-spike(0) to environment. So the output is available from the third

step onwards. At any step n ≥ 1, when the neuron σ2 uses the rule a2 → a, the spike

from neuron σ1 and anti-spike from σ2 will annihilate each other in neurons σ4 and

σ5, left them with the same number of spikes as that of the previous step. Neuron

σ2 receives a spike from neuron σ6 where as neuron σ6 receives an anti-spike from

neuron σ2. In the same step spike from neuron σ1 is also sent to neuron σ3. In the
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n + 1 step neurons σ1 and σ6 forget their anti-spikes received from σ2. Neuron σ3

sends a spike to neuron σ8. Neuron σ2 uses its third rule a → a by sending an anti-

spike to neurons σ4 and σ5. Neurons σ4 and σ5 are left with 2n + 3 and 2n + 1 spikes

respectively.The number of spikes in neurons σ4 and σ5 become odd, so they start

firing using their first rules. In the n + 2 step, the neuron σ8 outputs a spike (that

means total of n + 1 spikes). Neuron σ4 starts firing using the rule (aa)∗a3/a2 → a

repeatedly used until it is left with one spike, sending a total of n + 1 anti-spikes

to neurons σ7 and σ8. In σ8, the anti-spikes are converted into spikes and sent to

environment; At the same time σ7 also receives anti-spikes from σ5, accumulating a

total of 2n + 1 anti-spikes (one spike initially present in it annihilates with one anti-

spike). The last spike in neuron σ4 is used by the second rule a → a, and a spike is

sent to output neuron and neuron σ7. So the first anti-spike after n + 1 comes from

σ4. As the neuron σ7 is already having a spike, the total number of spikes become

even (2n). Then in the next n steps σ7 fires by sending a spike to neuron σ8, where

it is converted into anti-spike and sent to environment. So the language generated

becomes {0n1n0n | n ≥ 1}.

3.2.5 A Characterization of Recursively Enumerable Languages

A characterization of recursively enumerable (RE) languages is possible in terms of

languages generated by SN PA systems. Here we use the notion of a deterministic

register machine. Such a device is a construct M = (m,H, l0, lh, I), where m is the

number of registers, H is the set of instruction labels, l0 is the start label, lh is the

halt label (assigned to instruction HALT), and I is the set of instructions labelled in

a one-to-one manner by the labels from H .

Theorem 3.5. For every alphabet V = {a1, a2, . . . , as} there is a morphism h : V ∗ → B∗

such that for each language L ⊆ V ∗, L ∈ RE, there is an SN PA system Π such that

L = h−1(L(Π)).
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Proof. We follow here the same idea as in the proof of Theorem 9 from [18] adapted

to the case of anti-spikes.

The morphism is defined as follows:

h(ai) = 0i1, for i = 1, 2, . . . , s,

For a string x ∈ V ∗, let us denote by vals(x), the value in base s + 1 of x.(We

use base s+1 in order to consider the symbols of a1, a2, . . . , as as digits 1, 2, . . . s, thus

avoiding the digit 0 in the left hand of the string). We extend this notation in the

natural way to the set of strings. Now consider a language L ⊆ V ∗. Obviously L ∈ RE

iff vals(L) is recursively enumerable set of numbers. In turn, a set of numbers is

recursively enumerable if and only if it can be accepted by a deterministic register

machine [74]. Let M be such a register machine that is N(M) = vals(L).

We construct an SN PA system Π performing the following operations (σc0 and

σc1 are two distinguished neurons of Π, which are empty in the initial configuration):

i. Output i anti-spikes, for some 1 ≤ i ≤ s, and at the same time introduce the

number i in neuron σc0 ; in the construction below, a number n is represented in

a neuron by storing there 2n spikes, hence the previous task means introducing

2i spikes in neuron σc0.

ii. When this operation is finished, output a spike hence up to now we have produ-

ced a string 0i1.

iii. Multiply the number stored in neuron σc1 (initially, we have here number 0) by

s + 1, then add the number from neuron σc0 ; specifically, if neuron σc0 holds 2i

spikes and neuron σc1 holds 2n spikes, n ≥ 0; then we end this step with 2(n(s+

1) + i) spikes in neuron σc1 and no spike in neuron σc0 : In the meantime, the

system outputs no spike/anti-spike.

iv. Repeat from step 1, or, non-deterministically, stop the increase of spikes from

neuron σc1 and pass to the next step.
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v. After the last increase of the number of spikes from neuron σc1 we have got

vals(x) for a string x ∈ V + such that the string produced by the system up to now

is of the form 0i11λj10i21λj2 . . . 0im1λjm, for 1 ≤ il ≤ s and jl ≥ 1, for all 1 ≤ l ≤ m.

λ is a symbol for no output, which is ignored. i.e., h(x) = 0i110i21 . . . 0im1. We now

start to simulate the work of the register machine M in recognizing the number

vals(x). During this process, we output no spike, but the computation halts if

(and only if) the machine M halts, i.e., when it accepts the input number, which

means that x ∈ L.

From the previous description of the work of Π, it is clear that the computation halts

after producing a string of the form y = 0i11λj10i21λj2 . . . 0im1λjmλk as above, if and

only if x ∈ L. Moreover, it is obvious that x = h−1(y): we have h−1(y) = ai1 . . . aim .

Now, it remains to construct the system Π. Instead of constructing it in all de-

tails, we rely on the fact that a register machine can be simulated by an SN PA system,

as already shown in [79] for the sake of completeness and because of some minor

changes in the construction, we below recall the details of this simulation. Then, we

also suppose that the multiplication by s + 1 of the contents of neuron σc1 followed

by adding a number between 1 and s is done by a register machine (with the num-

bers stored in neurons σc0, σc1 introduced in two specified registers); we denote this

machine by M0. Thus, in our construction, also for this operation we can rely on

the general way of simulating a register machine by an SN PA system. All other mo-

dules of the construction (introducing a number of spikes in neuron σc0, sending out

spikes, choosing non-deterministically to end the string to generate and switching

to the checking phase, etc.) are explicitly presented below.

A delicate problem which appears here is the fact that the simulations of both

machines M0 and M have to use the same neuron σc1, but the correct work of the

system (the fact that the instructions of M0 are not mixed with those of M) will

be explained below. The overall appearance of Π is given in Figure 3.5, where M0

indicates the subsystem corresponding to the simulation of the register machine
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Figure 3.5: The structure of the SN PA system from the proof of Theorem 3.5

M0 = (m0, H0, l0,0, lh,0, I0) and M indicates the subsystem which simulates the regis-

ter machine M = (m,H, l0, lh, I). Of course, we assume H0 ∩H = ∅.

We start with s + 1 spikes in neuron σ1 and fires by using some rule as+1/as+1−i → a;

1 ≤ i ≤ s, then in next i − 1 steps, it uses its second rule producing a total of num-

ber i anti-spikes and the last spike is used by the third rule producing spike, hence

the first letter ai of the generated string. In each step, when neuron σ1 is producing

an anti-spike, 2 spikes are sent to the neuron σc0 through the neurons σ2 and σ3,

accumulating a total of 2i spikes and the step when the output neuron produces a

spike, it is ignored by neurons σ2 and σ3 and two spikes are sent to neuron l0,0 ; thus

triggering the start of a computation in M0.

The subsystem corresponding to the register machine M0 starts to work, mul-

tiplying the value of c1 with s + 1 and adding i. When this process halts, neuron lh,0

is activated (this neuron will get two spikes in the end of the computation and will
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spike), and in this way one spike is sent to neuron σ6 : This is the neuron which non-

deterministically chooses whether the string should be continued or we pass to the

second phase of the computation, checking whether the produced string is in L(M).

In the first case, neuron σ6 uses the rule a → a; which makes neurons e1, . . . , es+1

spike; these neurons send s + 1 spikes to neuron σ1, like in the beginning of the

computation. In the latter case, neuron σ6 uses the rule a → a; which in turn acti-

vates the neurons σ7 and σ8, they activate l0 by sending two spikes to it, thus starting

the simulation of the register machine M . The computation of Π stops if and only

if vals(x) is accepted by M . In order to complete the proof we need to show how
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Figure 3.6: (a) Module ADD (simulating li : (ADD(r), lj)) for M and M0, Module SUB (si-

mulating li : (SUB(r), lj ; lk)) (b) for machine M and (c) for machine M0

the two register machines are simulated, using the common neuron σc1 but without

mixing the computations. To this aim, we consider the modules ADD and SUB

from Figure 3.6 Neurons are associated with each label of the machine (they fire if

they have two spikes inside) and with each register (with 2n spikes representing the

number n from the register), there also are additional neurons with labels g1
i, i ≥ 1

it is important to note that all these additional neurons have distinct labels.
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The simulation of (ADD(r), lj) (add 1 to register r and then go to the instruction

with label lj) instruction is easy, we just add two spikes to the respective neuron; no

rule is needed in the neuron Figure 3.6(a). The (SUB(r), lj, lk) (if register r is non-

empty, then subtract 1 from it and go to the instruction with label lj , otherwise go

to the instruction with label lk) instructions of machines M and M0 are simulated by

modules as in Figure 3.6(b) and Figure 3.6(c), respectively. Note that the rules for M

fire for a content of the neuron σr described by the regular expression (a2)∗a and the

rules for M0 fire for a content of the neuron σr described by the regular expression

(a)2. This ensures the fact that the rules of M0 are not used instead of those of M or

vice versa. With these explanations, it can be checked that the system Π works as

requested.

The previous theorem gives a characterization of recursively enumerable lan-

guages, because the family RE is closed under direct and inverse morphisms.

3.3 SN PA Systems as Transducers

This section explores the capability of SN PA systems as transducers. First we simu-

late the Boolean circuits. We show the construction of Boolean circuits using AND,

OR and NOT involves the synchronizing module for yielding correct output. We pro-

vide an alternative way using universal gates - NAND and NOR which eliminates the

use of synchronizing module. We also use these systems to simulate finite automata

with output and binary arithmetic operations. Finally we solved the satisfiability

problem using SN PA systems.
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3.3.1 Simulating Boolean Gates

The Boolean values 0 and 1 are encoded in the SN PA system by anti-spike and spike

respectively. The output of the system is 0(hence false) if the output neuron sends

an anti-spike and output is 1(true) if a spike is sent to the environment. We want to

emphasize that no rule of the form ac → a is used.

Lemma 3.1. Boolean AND and OR gates can be simulated by SN PA systems with three

neurons in two steps.

Proof. We construct an SN PA system with three neurons as in Figure 3.7. The SN

PA system has two input neurons to take the input values and one output neuron to

produce the output. A spike/anti-spike is introduced in each input neuron corres-

ponding to input 1/0.

If we introduce an anti-spike (0) into each of the input neurons, the anti-spike

becomes a spike and sent to the output neuron in the next stage. So the output neu-

ron gets two spikes from the input neurons and it already has a spike, accumulating

a total of three spikes and fires using a rule a3 → a sending an anti-spike (0) to the

environment. But if we introduce a spike into each of the input neurons, the output

neuron gets two anti-spikes and gets annihilated with a spike already present in it,

remains with an anti-spike and fires using a rule a → a producing a spike.

a a 

         a a 
 a a 

input1
1

a a 
output 

input2

3

a a 

  a a 

a a 

a 

Figure 3.7: An SN PA system simulating AND gate
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In the third case, if a spike is introduced into one of the input neurons and an

anti-spike into another, then they get annihilated after reaching the output neuron.

So the output neuron has its one spike and fires using the rule a → a sending an

anti-spike to the environment. We can observe that it is simulating the AND gate

correctly.

If we replace the rule a → a with a → a in the output neuron of the above

system, we obtain the SN PA system for an OR gate.

Lemma 3.2. The Boolean NOT gate can be simulated by an SN PA system with two

neurons in two steps.

Proof. The SN P system with anti-spikes simulating the NOT gate is depicted in Fi-

gure 3.8. For synchronisation with OR and AND gates we added an output neuron

so that output is produced after two steps. (Otherwise, the simulation is very simple,

we can implement the gate with only one neuron in one step.)

If an anti-spike is introduced, the output neuron will have three spikes in the next

a a 

         a a 
 a a input

a a 

output 3

a 
2

Figure 3.8: An SN PA system simulating NOT gate

step and fires using the rule a3 → a, sending a spike. If a spike is introduced, it

gets complemented in the input neuron and annihilates with a spike in the output

neuron in the next step. So the output neuron has only one spike and produces an

anti-spike using the rule a → a. Thus the NOT gate complements the input.

Lemma 3.3. Boolean NAND and NOR gates can be simulated by SN PA systems with

three neurons in two steps.
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Proof. We construct SN PA system with seven neurons as in Figure 3.9. The SN PA

system has two input neurons to take the input values and one output neuron to

produce output. A spike/anti-spike is introduced in each input neuron correspon-

ding to input 1/0.

If we introduce an anti-spike (0) into each of the input neurons, the anti-spike

becomes a spike and sent to the output neuron in the next stage. So the output

neuron gets two spikes from the input neurons and it already has three spikes, ac-

cumulating a total of five spikes and fires using a rule a5 → a sending a spike (1)

to the environment. But if we introduce a spike (1) into each of the input neurons,

the output neuron gets two anti-spikes and gets annihilated with two spikes already

present in it, remains with a spike and fires using a rule a → a producing an anti-

spike (0). In the third case, if a spike is introduced into one of the input neurons
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Figure 3.9: An SN PA system simulating 2-input NAND gate

and an anti-spike into another, then they get annihilated after reaching the output

neuron. So the output neuron has its three spikes and fires using the rule a3 → a

sending a spike to the environment. We can observe that it is simulating the NAND

gate in a correct way.

If we replace the rule a3 → a with a3 → a in the output neuron of the above system,

we obtain the SN PA system for the NOR gate.

A universal gate is a gate which can implement any Boolean function without need

to use any other gate type. The NAND and NOR gates are universal gates. The NAND

gate represents the complement of the AND operation and the NOR gate represents
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the complement of the OR operation. In practice, this is advantageous since NAND

and NOR gates are economical and easier to fabricate and are the basic gates used

in all IC digital logic families.

Similar to the 2-input NAND gate, we can construct n-input NAND gate. The out-
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Figure 3.10: An SN PA system simulating n-input NAND gate

put of the gate is false (0) only if all the inputs are true (1) and is true if any of the

inputs is false. The SN PA system for n-input NAND gate is shown in Figure 3.10.

The maximum number of anti-spikes received by the output neuron is n (if all in-

puts are spikes corresponding to true) and they get annihilated with n spikes in the

output neuron and is left with a spike and fires using the rule a → a producing an

anti-spike. In all other cases it produces a spikes. Thus simulating the n-input NAND

gate correctly.

3.3.2 Simulating Boolean Circuits

Here, we present the way to simulate any Boolean circuit using the AND, OR and

NOT gates constructed in the previous section. But there is a need to construct syn-

chronising module to ensure the synchronization among the gates.
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We consider the function f : {0, 1}4 → {0, 1} given by the formula f(x1, x2, x3,

x4) = ¬(x1 ∧ x2) ∨ (x3 ∧ x4).

We use the SN P systems with anti-spikes for AND, OR and NOT gates. Let them

be ΠAND, ΠOR and ΠNOT . The Boolean circuit corresponding to the above formula

as well as the spiking system assigned to it are depicted in Figure 3.11.

In order for the system that simulates the circuit to output the correct result

it is necessary for each sub-system (that simulates the gates AND, OR and NOT) to

receive the input from the above gate(s) at the same time. To this aim, we have to

add a synchronizing SN P system ΠSY N as in Figure 3.12. Generalizing the previous

observations the following result holds:

Theorem 3.6. Every Boolean circuit, whose underlying graph structure is a rooted

tree, can be simulated by an SN PA system constructed from SN PA systems of types

AND, OR and NOT by reproducing in the architecture of the SN PA system, the struc-

ture of the tree associated with the circuit.
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1

x4x2 x3

Figure 3.11: Boolean circuit and the corresponding SN PA system for ¬(x1 ∧ x2) ∨ (x3 ∧ x4)

Simulate any Boolean circuit using NAND or NOR gates eliminates the synchro-

nizing SN PA system. We know that any Boolean function can be represented in

sum-of-product (SOP) and product-of-sum forms (POS). SOP forms can be imple-

mented using only NAND gates, while POS forms can be implemented using only
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Figure 3.12: Synchronizing SN P system with anti-spikes

NOR gates. In either case, implementation requires two levels. The first level is for

each term and second level for product or sum of the terms.

Again consider the Boolean function ¬(x1 ∧ x2) ∨ (x3 ∧ x4). It is written in SOP

from as ¬x1 ∨ ¬x2 ∨ (x3 ∧ x4).

We use the SN P systems with anti-spikes for 2-input and 3-input NAND gates.

Let ΠNAND is an SN PA systems for NAND gate. The Boolean circuit corresponding

to the above formula as well as the spiking system assigned to it are depicted in Fi-

gure 3.13.

Note that in Figure 3.13, Π
(1)
NAND,Π

(2)
NAND,Π

(3)
NAND are SN PA systems for 2-input

(2)

NANDNAND

(1)

¬x x
42

x
3

 

¬x
1

(3)

NAND

(4)

NAND

Figure 3.13: Boolean circuit using NAND gates and the corresponding SN PA system

for ¬(x1 ∧ x2) ∨ (x3 ∧ x4)

NAND gates and Π
(4)
NAND is the SN P system for 3-input NAND gate. Having the ove-

rall image of the functioning of the system, let us give some more details on the

simulation of the above formula. For that we construct the SN P system with anti-

spikes.
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ΠC=(Π(1)
NAND,Π

(2)
NAND,Π

(3)
NAND,Π

(4)
NAND) formed by the sub-SN PA systems for each

gate and we obtain the unique result as follows:

1. For every gate of the circuit with inputs from the input gates we have a SN PA

system to simulate it. The input is given to the input neurons of each gate;

2. For each gate which has at least one input coming as an output of a previous

gate, we construct an SN PA system to simulate it by adding a synapse from

the output neuron of the gate from which the signal (spike) comes to the input

neuron of the system that simulates the new gate.

For the above formula and the circuit depicted in Figure 3.13 we will have:

Π
(1)
NAND for the first NAND operation ¬(¬x1 ∧ ¬x1) = x1 with each input as ¬x1.

(for ¬x1 as input, an anti-spike is introduced in each input neuron of Π(1)
NAND).

Π
(2)
NAND for the second NAND operation ¬(¬x2 ∧ ¬x2) = x2) with each input as ¬x2.

Π
(3)
NAND for the third NAND operation ¬(x3 ∧ x4) with inputs as x3 and x4. These

three SN PA systems Π(1)
NAND, Π(2)

NAND and Π
(3)
NAND act in parallel producing the output

at the same time. The outputs enter the 3-input NAND gate Π
(4)
NAND at the same time

which eliminates the use of synchronising module.

Π
(4)
NAND computes NAND operation on x1, x2 and ¬(x3 ∧ x4) outputting ¬x1 ∨

¬x2 ∨ (x3 ∧ x4) to the environment.

Generalizing the previous observations the following result holds:

Theorem 3.7. Every Boolean circuit can be simulated by an SN PA system and is

constructed from SN PA systems of type NAND or NOR, by reproducing the structure

associated with the circuit.
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3.3.3 Simulating Finite State Transducers

SN PA systems can simulate in a direct manner several types of computing devices

based on finite state transitions. Let S = (Q,Σ,∆, δ, µ, q1, F ) be a deterministic fi-

nite state transducer with binary input and output, where Σ = ∆ = {0, 1}, Q =

{q1, . . . , qn}, q1 is the initial state, δ is the transition function that maps Q × Σ → Q

and µ is the output function from Q× Σ → ∆.

We demonstrate that S can be simulated by an SN PA system.

Consider the following SN PA system:

ΠS=({a, a}, σ1, σ2, . . . , σ3n+1, syn , 3n+ 1, 3n + 1), with

σi = (a, {a → a, a → a }), i = 1, 2, . . . , 3n,

σ3n+1 = (a3(n+1), {a3(n+i)+1/a3(n+i−j)+1 → b′ | δ(qi, 1) = (qj , b)}∪

{a3(n+i)−1/a3(n+i−j)−1 → b′ | δ(qi, 0) = (qj, b)}) where b ∈ {0, 1} and b′ = a if b = 1 and

b′ = a if b = 0,

syn is the set of pairs (i, 3n + i), (3n+ i, i) with 1 ≤ i ≤ 3n.

The system is given in a pictorial way in Figure 3.14. Note that n is the number

of states, and that for each 1 ≤ i ≤ n, qi in Q is represented by a3(n+i). The number

of spikes a3(n+i) in neuron σ3n+1 is referred to (or identified) as a state of ΠS . The

manner of constructing ΠS is a modification of the one presented using extended

SN P systems in [45].

This system works as follows. Initially, the neuron σ3n+1 contains 3(n+1) spikes

which corresponds to the initial state q1. Suppose that, in any step, neuron σ3n+1

contains a3(n+i)(representing state qi) and is ready to receive input a or a (represen-

ting 1 or 0 respectively) from environment. Depending on whether the input is a

spike or anti-spike, neuron σ3n+1 can fire and emit a spike(if b′ = 1) or anti-spike(if

b′ = 0) to environment by consuming 3(n + i − j) + 1 or 3(n + i − j) − 1 spikes

leaving 3j spikes. It receives 3n spikes from neurons 1 to 3n accumulating a total

of 3(n + j) spikes (representing qj). Hence, one state transition δ(qi, b) = (qj , b
′) is
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simulated. This action is repeatedly performed in a number steps equal to the in-

put length. When the system stops receiving the input, the neuron σ3n+1 will have a

number of spikes which is a multiples of 3, hence the system halts. Thus, (with one

step delay) for a given input w = bi1bi2 . . . bir in {0, 1}∗, the SN PA system ΠS produces

an output y = µ(qi1 , bi1)µ(qi2 , bi2) . . . µ(qir , bir) in {0, 1}∗, where the sequence of states:

z = qi1qi2 . . . qir such that δ(qij , bij ) = qij+1
for j = 1, 2, . . . , r−1 and qi1 = q1. We denote

the output by y = ΠS(w) and the sequence of states by z = ΠSq(w). A transducer S

defines a function w → S(w), hence simulating S means that if y = S(w), then

y = ΠS(w). Then it holds that y is generated by S (i.e., δ(q1, w) ∈ F ) iff z = ΠSq(w)

ends up with a final state in F (i.e., qir is in F ). We now define the language generated

by ΠS as

N (ΠS) = {y ∈ {0, 1}∗ | w ∈ {0, 1}∗, y = ΠS(w) and ΠSq(w) is in Q∗F}

Thus, the following theorem holds:

a 

2

a

 /aa 

3(n+1)

3(n+i)+1 3(n+i-j)+1

a 

3n

a a 
aa a 

a a 
a

a 

1

a 
a a 

a

.  .  .  .  .  .  .  .  .  .  . 

3n+1

where δ(qi ,1)=(qj , b)b' 

 /aa 
3(n+i)-1 3(n+i-j)-1 where δ(qi ,0)=(qj , b)b' 

b'=a if b=1 and b'=a if b=0

a  or a

Figure 3.14: An SN PA system simulating a transducer

Theorem 3.8. Any finite state transducer S can be simulated by some SN PA system

ΠS .
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3.3.4 Arithmetic Operations using SN PA System

In this section we consider SN P system with anti-spikes as simple arithmetic device

that can perform the arithmetic operations like 2’s complement, addition and sub-

traction with input and output in binary form. The binary sequence of 0 and 1 are

encoded as anti-spike and spike respectively and in each time step input is provided

bit-by-bit starting from least significant bit. The negative numbers are represented

in two’s complement form. The advantage of using SN P systems with anti-spikes is

that they can encode the 0 and 1 as anti-spike and spike in a very natural way and

thus providing a way to represent negative numbers also.

2’s Complement

The 2’s complement is used to represent a negative of a binary number. It also gives

us a straightforward way to add and subtract positive and negative binary numbers.

A simple way to find the 2’s complement of a number is to start from the least signi-

ficant bit keeping every 0 as it is until you reach the first 1 and then complement all

the rest of the bits after the first 1.

a a 

         a a 

a
a

2
 

a 
 a a 

3

input 

2

1
a

4

/

a a 
 a a

a a 

         a a 

3

output 

Figure 3.15: An SN PA system computing 2’s complement

Theorem 3.9. 2’s complement of a binary number can be calculated using an SN P

systems with anti-spikes using three neurons.
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Proof. The SN PA system that performs the 2’s complement is shown in Figure 3.15.

Neuron σ1 is the input neuron. Neuron σ3 is the output neuron, which sends output

to environment. The input neuron has two rules to complement the input by chan-

ging a spike into anti-spike and anti-spike into spike and send it to its neighbouring

neuron σ2. The neuron σ2 initially has 3 spikes and as long as it receives a spike (ac-

tual input to the input neuron is 0), it uses the first rule a4/a → a by send a spike

to the output neuron where it is complemented into anti-spike, which is same as

the input. But if the second neuron receives anti-spike(that means we got the first

1), it will be left with two spikes because of the annihilation rule that is implicitly

present in each neuron and uses the rule a2 → a and sends an anti-spike to the out-

put neuron where it is complemented as spike and sent to the environment(that is

first 1 is unchanged). After firing the rule, the neuron σ2 has no spikes/anti-spikes

and then simply complements the input it receives by using the third and fourth

rule and sends it to the output neuron where it is again complemented and sent to

environment. That means after the first one, the output will be the complement of

input. We can easily observe that the system correctly calculates the 2’s complement

and emits its first output bit at t = 4 as there is one intermediate neuron.

As an example, let us consider a binary number 01100 (12 in decimal). The way

the SN PA system computes the 2’s complement is represented in Table 3.1. It reports

the number of spikes/anti-spikes present in each neuron and output produced by

the output neuron to the environment in the output column.

Addition and Subtraction

The SN PA system performing the addition is shown in Figure 3.16. The negative

numbers are represented in 2’s complement form using the system SN PA system

given in the previous section and then fed as input.
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Time Input Neuron σ2 Neuron σ3 Output

t=0 - a3 - -

t=1 a(0) a3 - -

t=2 a(0) a4 - -

t=3 a(1) a4 a -

t=4 a(1) a2 a a(0)

t=5 a(0) a a a(0)

t=6 - a a a(1)

t=7 - - a a(0)

t=8 - - - a(1)

Table 3.1: Number of spikes/anti-spikes present in each neuron of an SN PA system during

the computation of 2’s complement of 01100.

Theorem 3.10. Addition of two binary numbers can be performed using SN P systems

with anti-spikes.

Proof. The system has two input neurons, the first number is provided through first

input neuron and the second one through the other input neuron. First input neu-

ron is connected to neurons σ1 and σ2 and second input neuron is connected to

neurons σ3 and σ4. The presence of a spike in the output neuron indicates a carry

of the previous addition. Each input neuron has two rules to complement the input

and send the output to its neighbouring two neurons. here we are having 3 cases:

1. If both the inputs are 1(spike), then in each input neuron uses the second rules

and sends an anti-spike two of its neighbouring neurons where the anti-spikes

are converted spikes. So the output neuron σ5 receives four spikes, one from

each of the four neurons of the previous stage. If the output neuron is already

having a spike(carry), then the number of spikes become 5 and fires using a

rule a5/a4 → a otherwise it has four spikes and fires using the rule a4/a3 → a
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leaving one spike in the output neuron in either case. The presence of a spike

in the output neuron indicates a carry. This encodes the two operations 1+1=0

with carry 1 and (1)+1+1=1 with carry 1.

2. If one of the input bit is zero, then the input neuron receiving an anti-spike

sends a spike to each of it’s neighbouring neurons. For example if the first

input is 0 and the second input is 1 then first input neuron sends a spike two

each of neighbouring neurons σ1 and σ2. In the neuron σ1, the spike remain

the same and where as in σ2 it is forgotten, so the number of spikes sent to the

output neuron is 1, whereas the neighbouring neurons of second input neuron

send two spikes to the output neuron. So three spikes are received if one of the

input is zero. The output neuron has either three or four (in case carry) spikes

and fires using a3 → a or a4/a3 → a respectively. These rules encode the two

operations 0+1=1 and (1)+0+1=0 with carry 1 respectively.

3. If both the input neurons receive anti-spikes (0), then the output neuron re-

ceives two spikes and it will have either two or three (again in case of carry of

the previous operation) spikes and fires using a2 → a or a3 → a. These two

rules do not leave any carry encoding the operations 0+0=0 and (1)+0+0=1 res-

pectively.
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Figure 3.16: An SN PA System simulating addition operation
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Time Input 1 Input 2 σ1 σ2 σ3 σ4 σ5 Output

t=1 a(1) a(1) - - - - - -

t=2 a(1) a (1) a a a a - -

t=3 a(1) a(0) a a a a a4 -

t=4 a(0) a(1) a a a a a5 a(0)

t=5 - - a a a a a4 a(1)

t=6 - - - - - - a4 a(0)

t=7 - - - - - - a a(0)

t=7 - - - - - - - -

Table 3.2: Number of spikes/anti-spikes present in each neuron of the SN PA system during

the addition of 0111 and 1011.

The last rule in the output neuron a → λ allows the last overflow bit to be ignored.

The procedure confirms the correctness of the system for performing the addition

of two numbers.

As an example, let us consider the addition of 7 and -5. Number 7 is represen-

ted in binary form as 0111 and -5 is represented in 2’s complement form as 1011.

The two binary sequences will form the input for the SN PA system. The number of

spikes present in each neuron in every step and the output produced by the system

is depicted in Table 3.2.

Two’s complement subtraction is the binary addition of the minuend to the 2’s com-

plement of the subtrahend (adding a negative number is the same as subtracting a

positive one). That means a − b becomes a + (−b). The SN PA system for addition

can be used to perform subtraction. The multiplication is viewed as repeated ad-

dition and division as repeated subtraction. This implies that SN P systems with

anti-spikes can very well perform the binary operations in a natural way.
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3.4 Solving SAT with SN PA Systems

An instance of SAT is a Boolean formula in CNF γ = C1∧C2∧ . . .∧Cm, i.e., a conjunc-

tion of clauses Cj , 1 ≤ j ≤ m. Each clause is a disjunction of literals, i.e., occur-

rences of xi or ¬xi, built on the finite set X = {x1, x2, . . . , xn} of Boolean variables. In

what follows, we will require that no repetitions of the same literal may occur in any

clause; in this way, a clause can be seen as a subset of all possible literals. An assi-

gnment of the variables x1, x2, . . . , xn is a mapping s : X → {0, 1}n that associates to

each variable a truth value. The number of all possible assignments to the variables

of X is 2n. We say that Boolean formula γ is satisfiable if there exists an assignment

of truth values to all the variables which occur in γ such that evaluation of γ gives 1

(true) as a result. The problem of SAT takes an arbitrary Boolean formula γ as input

and asks if γ is satisfiable.

An SN PA system that solves the SAT problem in a non-deterministic uniform

way is given in Figure 3.17. The system has one module for each clause. As the

construction is uniform, we code each clause Cj, 1 ≤ j ≤ m, of the given instance of

SAT as follows: 1 indicates the case when xi appears in Cj, 0 indicates the case when

¬xi appears in Cj and λ (empty) indicates the absence of xi in the clause Cj. That

means that a spike, an anti-spike or no input (λ) are to be introduced in the input

neurons of the system from the second step onwards and the output neuron emits

a spike, if the given instance of SAT has a solution, otherwise sends an anti-spike.

Actually, we consider m input neurons, one for each clause, and in each of them

we introduce a sequence of n bits 1, 0 and λ (a spike, anti-spike or no input is sent

inside in the steps corresponding to the occurrence of 1,0 and λ respectively), des-

cribing the situation of each variable x1, . . . , xn with respect to the corresponding

clause.

For instance, for the formula

γ = (¬x1 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3)
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we have two input neurons, the first one receiving the spike train 0λ10, and the se-

cond one receiving the spike train λ10λ. Note the important fact that introducing

the input takes only n steps.

A module Yj exists for each clause Cj, 1 ≤ j ≤ m. Each module has a synapse going

to the output neuron σout.

Neurons σc and σb are common to all modules; a synapse exists from σc to σb and

from σb to all neurons σdj of modules Yj . Neuron σc provides a spike to neuron σb in

each step for n − 1 steps. The neuron σb non-deterministically produces a truth-

assignment for the variables x1, . . . , xn, using the choice between rules a → a and

a → a. The spike needed for the truth assignment of x1 is initially present in the

neuron σb, while it gets the spike in each step for the next n − 1 variables from the

neuron σc.

An anti-spike coming out of σb is interpreted as the value false assigned to xi,

and a spike is interpreted as the value true assigned to xi. Therefore, σdj receives

either an anti-spike or a spike from the neuron σb, and the spikes which codify the

type of presence of xi in clause Cj (no occurrence, negated, not negated).

In order to synchronize the checking performed in neurons σdj , i.e., to bring

here the truth assignment of variable xi in the moment when the code of the pre-

sence of xi in Cj arrives in this neuron, we use the neuron σc that supply spikes to

neuron σb in each step for next n − 1 steps. In each step beginning with the second

step, all neurons σdj receive both the truth assignment of xi and the code of the way

xi is related with Cj . As one can see from the previous explanations, in each step

2, 3, . . . , n + 1, neurons σdj , 1 ≤ j ≤ m, receive a number of spikes/anti-spikes as

follows:

1 anti-spike if xi = false and xi does not appear in Cj;

1 spike if xi= true and xi does not appear in Cj ;

no spikes/anti-spikes if xi= false and xi appears in Cj ;

2 spikes if xi= true and xi appears in Cj ;
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Figure 3.17: An SN PA system solving SAT

2 anti-spikes if xi = false and ¬xi appears in Cj;

no spikes/anti-spikes if xi= true and ¬xi appears in Cj

Thus, the rules of σdj produce a spike only in the case when the clause Cj be-

comes true for the corresponding truth assignment of variable xi. This spike reaches

neurons σej . Each neuron σej has already n spikes and fires using the rule an+1 → a.

The use of neuron ej ensures the fact that σout receives at most one spike from each

module Yj, namely, only if clause Cj has been satisfied. All neurons σej , 1 ≤ j ≤ m,

are linked by a synapse to the output neuron σout. The neuron σout spikes (in step n+

3) using a rule am → a only if the truth assignment produced non-deterministically

by modules Yj satisfies the formula γ.

It should be noted that the number of neurons of the system constructed above

is 2m + 3, and that the computation takes a number of steps which is linear in n.

Note that without anti-spikes [66] the solution requires double the number of steps

and 3n2 + 8m+ 5 neurons.
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3.5 Conclusion

In this chapter, we have investigated the power of SN PA systems with standard rules

as language generators. We have proved characterizations of finite and regular lan-

guages over binary alphabet. We can extend the proofs to any alphabet by conside-

ring the morphisms. We have also proved a characterization of recursively enume-

rable languages. Here we ignored the no output steps.

We also examined the computational efficiency of SN PA systems used as trans-

ducers. We showed that the idea of encoding 1 as spike and 0 as anti-spike proves

to be very efficient in simulating Boolean circuits, finite state transducers and sol-

ving NP-complete problems. We designed SN PA systems simulating the operations

of different Boolean gates. We also designed SN P systems with anti-spikes to per-

form arithmetic operations like 2’s complement, addition and subtraction. The ad-

vantage of using this variant of SN P system is that we can perform the operations

on negative numbers also. The input to the systems is a binary sequence of spikes

and anti-spikes which encodes the digits 1 and 0 respectively, of a binary number.

The negative numbers are in 2’s complement form. The outputs of the computa-

tions are also expelled to the environment in the same form. This motivates the

modelling of CPU with SN P system with anti-spikes. We show that any instance of

SAT in conjunctive normal form, with n variables and m clauses is solved in a non-

deterministic way with the number of neurons polynomial in m.
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Chapter 4

SN P Systems and Petri Nets

This chapter describes an approach to the modelling of spiking neural P systems

using Petri nets. The approach is supported by simulating and analysing the obtai-

ned models through a Java based Petri net tool called PNetLab. The simulation and

analysis results are demonstrated through examples. This enables us to employ Petri

nets for analyzing the computation and the behavioural properties of SN P systems.

In Section 4.2, we define vector rules and transitions of the SN P systems in order to

relate them with the Petri nets. In Section 4.3, we introduce the class of Petri nets

we are interested in and the execution modes to be considered for the simulation of

SN P systems. General procedure to translate standard SN P systems into equivalent

Petri net models is provided in Section 4.4. The algorithm is illustrated through se-

ries of examples in Section 4.5. The simulation and analysis results are presented for

the SN P systems through PNetLab.

113



Chapter 4. SN P Systems and Petri Nets

4.1 Introduction

An SN P system contains a set of neurons, each neuron can hold spikes in the form

of occurrences of a symbol a; the spiking activity of neurons in the brain is abstrac-

ted to spiking and forgetting rules associated with conditions represented as regular

expressions over {a}. SN P systems work in a locally sequential and globally parallel

way. That is, in each neuron, at each step, if more than one rule is enabled, then only

one of them can fire. But still, all neurons fire in parallel at the system level.

It is usually a complex task to predict or to guess how an SN P system will be-

have. Moreover, as there do not exist, up to now, implementations in laboratories

(neither in vitro nor in vivo nor in any electronic media), it seems natural to look

for software tools that can provide assistance to simulate the computations of SN P

systems.

In [39], a tool for simulating standard and extended SN P system is introduced

that yields only the transition diagram of a given system in a step-by-step mode and

it lacks of step-by-step graphical simulation and analysis of these systems.

In [68], a P-Lingua based simulator for SN P systems with neuron division and

budding is presented. P-Lingua is a programming language to define P systems

[1, 22, 26], that comes together with a Java library providing several services; (e.g.,

parsers for input files and built-in simulators). The new version has extension of the

previous syntax in order to define SN P systems with neuron division and budding

and the library has been updated to handle P-Lingua input files defining SN P sys-

tems. A new built-in simulator has been added to the library in order to simulate

computations of SN P systems. The SN P system variants considered in the thesis

are not covered in P-Lingua.

In [15], SN P systems without delay are simulated using a highly parallel com-

puting device such as a Graphical processing units (GPU) and the NVIDIA Com-

pute Unified Device Architecture (CUDA) programming model. The simulator was
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shown to model the working of an SN P system without delay using the system’s ma-

trix representation [99]. Simulating SN P systems in parallel devices such as GPUs

need an extra hardware and software.

There are different interactions between classes of P systems and Petri nets that

have been investigated so far [25, 55–60]. Different variants of P systems are transla-

ted into Petri nets to complement the functional characterisation of their behaviour.

In [59, 60] Petri nets with localities are introduced to represent compartmentisation

of membrane systems. Range arcs are introduced in Petri nets [57, 58] to model the

dynamic structure of membranes, inhibitors and promoters in membranes . Howe-

ver, all these new variants of Petri nets typically lack the tools for building models,

for executing, and for observing simulation experiments.

The translation of spiking neural P systems into models of Petri nets was first

mentioned in [33], suggestion for research in Section 6. In this chapter, we propose

to use Petri nets with guard function as a model for the semantics of parallel systems

like SN P systems. Petri nets are widely used as a model of concurrency, which allows

to represent the occurrence of independent events. They can be as well a model of

parallelism [53], where the simultaneity of the events is more important, when we

consider their step sequence semantics in which an execution is represented by a

sequence of steps, each of them being the simultaneous occurrences of transitions.

The step sequence semantics can very well represent the locally sequential and glo-

bally maximal firing semantics of standard SN P systems. A major strength of Petri

nets is their support for analysis of many properties and problems associated with

concurrent systems. Petri nets are thus suitable for specifying and verifying SN P

systems.

In this chapter, we consider P/T nets with marking-dependent arc weights and

guard functions for modelling SN P systems. The Petri net models obtained after

translation are considered for simulation using PNetLab. PNetLab is a Java based

Petri net tool which supports the parallel execution of transitions. It also allows to
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write user defined guard functions in C/C++, which makes it possible to represent

the regular expressions associated with spiking/forgetting rules. It also provides

step-by-step watching system for collecting simulation reports. Our main goal in

this chapter is to show that Petri nets are also suitable for the execution and to study

the behavioural properties of the modelled SN P systems.

4.2 Standard SN P Systems

An SN P system Π = (O, σ1, σ2, σ3, . . . , σm, syn, i0) is represented as a directed graph

where nodes correspond to the neurons having spiking and forgetting rules. The

rules involve the spikes present in the neuron in the form of occurrences of a symbol

a. The arcs indicate the synapses among the neurons. The spiking rules are of the

form E/ar → a; d and are used only if the neuron contains n spikes such that an ∈

L(E) andn ≥ r, whereL(E) is the language generated by the regular expression E. In

this case r number of spikes are consumed and one spike is sent out. When neuron

σi sends a spike, it is replicated in such a way that one spike is sent to all neurons σk

such that (i, k) ∈ syn after d steps, where syn is the set of directed arcs between the

neurons. Between the moment when a neuron fires and the moment when it spikes,

each neuron needs a time interval called delay d (or refractory period). During the

delay, the neuron is closed and it neither fires nor receives any spikes from other

neurons. The forgetting rules are of the form as → λ and are applied only if the

neuron contains exactly s spikes. The rule simply removes s spikes. For all forgetting

rules, as must not be the member of L(E) for any firing rule E/ar → a; d within the

same neuron.

If d = 0, then sometimes it is omitted when writing the rule and are called non

delayed rules. If all rules in system are non delayed (i.e. d = 0 in all rules) then the

system is called SN P system without delay.

Definition 4.1 (Configuration). The configuration of the system is described by both
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the contents of each neuron and its state, which can be expressed as the number

of steps to wait until it becomes open (zero if the neuron is already open). Thus

〈α1/d1, α2/d2, . . . , αm/dm〉 is a configuration where neuron σi contains αi ≥ 0 spikes

and it will open after di ≥ 0 steps, for i = 1, 2, 3, . . . , m. With this notation, the initial

configuration of the system is described by C0=〈n1/0, n2/0, n3/0, . . . , nm/0〉.

The configuration of an SN P system without delay is represented by omitting

the delay part as 〈α1, α2, . . . , αm〉. The SN P system is synchronized by means of a

global clock and works in a locally sequential and globally maximal manner. That

is, the working is sequential at the level of each neuron. In each neuron, at each

step, if more than one rule is enabled by its current contents, then only one of them

(chosen non-deterministically) can fire. But still, the system as a whole evolves in

parallel and in a synchronising way, as in, at each step, all the neurons (that have an

enabled rule) choose a rule and all of them fire at once.

Definition 4.2 (Vector rule). A vector rule of Π is a tuple v
df
= 〈1j1, 2j2, . . . ,mjm〉 where,

for each neuron σi, ji is either 0 (when no rule is enabled in σi) or s (s stands for spiking

of the neuron σi after being closed for d− 1 steps) or an enabled rule iji from Ri.

If a vector rule v of Π is enabled at a configuration C = 〈n1/d1, n2/d2, . . . , nm/dm〉,

then iji for each neuron σi can be in any of the following forms:

1. i0, if σi is closed and di ≥ 2 or no rule is enabled.

2. is, if di = 1.

3. ij, if σi is open and ni ∈ Ψ(L(E)) for any rule ij ∈ Ri with regular expression E.

If more than one rule is enabled, then the rule ij will be chosen non-deterministically.

The number of spikes consumed and produced by the rule ij is denoted as lhs(ij)

and rhs(ij) respectively. Note that rhs(is)=0 and rhs(i0)=0.
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Definition 4.3 (Transition). A vector rule v = 〈1j1, 2j2, . . . ,mjm〉 enabled at C = 〈α1/d1,

α2/d2, . . . , αm/dm〉 can evolve to C′=〈α′
1/d

′
1, α

′
2/d

′
2, . . . , α

′
m/d

′
m〉 such that for every σi in

Π:

d′i =



















d if iji is of the form E/ar → a; d with d ≥ 1

di − 1 if ji = 0 and di ≥ 1

0 otherwise

n′
i =































ni − lhs(iji) +
∑

(k,i)∈syn rhs(kjk) if iji is of the form E/ar → a; 0 or as → λ

ni − lhs(iji) if iji is of the form E/ar → a; d with d ≥ 1

ni +
∑

(k,i)∈syn rhs(kjk) if iji = is

ni if iji = i0

Using a vector rule v, we pass from one configuration of the system to another

configuration and such a step is called a transition. We denote this by C
v

=⇒ C′. Note

that the transition of C is non-deterministic in the sense that there may be different

vector rules applicable to C, as described above.

A computation of Π is a finite or infinite sequences of transitions starting from

the initial configuration, and every configuration appearing in such a sequence is

called reachable. A computation halts if it reaches a configuration where no rule

can be used.

Let γ = C0
v1=⇒ C1

v2=⇒ . . .
vk=⇒ Ck be an halting computation (C0 is the initial

configuration, and Ci−1
vi=⇒ Ci is the ith transition of γ).

For each transition i of γ, we associate a symbol bin(v i) = bi ∈ {0, 1} such that bi = 1

if and only if vi(i0) is a non delayed spiking rule with rhs(vi(i0)) = 1 or vi(i0) = is

(output neuron of the system Π sends a spike into the environment in transition i of

γ), otherwise bi = 0. Let us denote by bin(γ) the string b1b2 . . . bk where bin(v i) = bi

for i = 1, 2, . . . k.
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We denote by COM(Π) the set of all halting computations of Π. Moreover, the

language generated by Π is defined as L(Π) = {bin(γ) | γ ∈ COM(Π)} [18].

4.3 Petri Nets with Guard

Now, we define a class of Petri nets suitable for the parallel execution of SN P sys-

tems.

Definition 4.4 (P/T net with marking-dependent arc weights and guard functions

or Petri net with guard). A Petri net with guard is a tuple NL = (P, T, F, W,G,M0),

where

P = {p1, p2, . . . pm} is a finite, non-empty set of places; A marking M = {M(p1),M(p2),

. . . ,M(pm)} describes an assignment of tokens to each place. A marking-dependent

expression is a function of the marking, f(M) = f(M(p1),M(p2), . . . ,M(pm)) ∈ N.

T = {t1, t2, . . . tn} is a finite, non-empty set of transitions;

F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs;

W : F → f(M) is a weight function; and

for each t ∈ T , G(t) is a boolean expression called the guard of t which is again

marking-dependent. It specifies an additional constraint and the transition t is en-

abled only if G(t) holds true in the marking.

M0 : P → N is the initial marking.

The terms Petri nets and P/T nets with marking-dependent arc weights and

guard functions are used synonymously in this chapter and further in the thesis. A

marking M of NL is a function from the set of places of NL into the set of non

negative integers {0, 1, 2, . . .}. Submarking of a Petri net NL is the marking of some

of the places of NL.

Parallel activities can be easily expressed in terms of Petri nets using step se-

mantics in which an execution is represented by a sequence of steps [13, 53]. Steps
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in Petri nets are sets of transitions that fire independently and parallel at the same

time. The change in the marking of the net when a step occurs is given by the sum

of all the changes that occur for each transition. As in [53], if every transition oc-

curs only once, like in elementary net systems, thus having single usage within the

step, then we use the naming step. A multiset of transition, on the other hand, may

contain more than one occurrence of a transition. In this case, a transition can fire

several times in one step. Since such multisets of transitions can be seen as the sum

of several single steps, they will shortly be called multi-steps. For translating stan-

dard SN P systems, we consider only steps.

Definition 4.5 (Step occurrence rule). Let NL = (P, T, F, W,G,M0) be a Petri net. A

set of transitions U ∈ 2T/{∅}, called step, is enabled to occur in a marking M of NL

iff

∀p ∈ P : M(p) ≥
∑

t∈U W (p, t) and ∀t ∈ U , G(t) is true.

If a step U is enabled to occur in a marking M, then its occurrence leads to the new

marking M′ defined by

∀p ∈ P : M′(p) = M(p) +
∑

t∈U(W (t, p)−W (p, t))

We write M[U〉M′ to denote that U is enabled to occur in M and that its occur-

rence leads to M′. It is worth noting that if a step U is enabled at a marking, then so

is any sub-step U ′ ⊆ U . A step U is a maximal step at a marking M, if M[U〉 and there

is no transition t′ such that M[U + t′〉. A Petri net system NL with maximal strategy

is such that for each markings M and M′ if there is a step U such that M[U〉M′, then

U is a maximal step and we write as M[U〉mM′. In [13], it is proved that P/T nets with

maximal strategy can perform the test for zero and so the computational power is

extended up to the power of Turing machines. Ciardo in [20] proved that P/T nets

with marking-dependent arc weights are also Turing equivalent.

The notions of steps and maximal steps are recursively generalized to step se-

quences and maximal step sequences:
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Definition 4.6 (Step Sequence). Let NL = (P, T, F, W,G,M0) be a Petri net and

M be a marking of NL. A finite sequence of steps ρ = U1 . . . Un, n ∈ N
+ is called a

step sequence enabled in M and leading to Mn if there exists a sequence of markings

M1, . . . ,Mn−1 such that M[U1〉M1[U2〉 . . . [Un〉Mn.

The marking Mn is reachable from the marking M if and only if there exists a

step sequence enabled in M and leading to Mn.

We can extended this definition to maximal step sequences. A finite sequence

of maximal steps ρ = U1 . . . Un, n ∈ N
+ is called a maximal step sequence enabled in

M and leading to Mn if M[U1〉mM1[U2〉m . . . [Un〉mMn.

A (maximal) step sequence ρ = U1 . . . Un is halting if no non-empty (maximal)

step is fireable at Mn and the marking Mn is called a terminal marking, A computa-

tion of a Petri net NL is an halting (maximal) step sequence starting from the initial

marking and every marking appearing in such a sequence is called reachable. We

shall write respectively S(NL) and Sm(NL) for the sets of halting step sequences

and maximal step sequences of NL fireable at the initial marking M0. The step se-

quences whose steps consist of at most one transition are called firing sequences.

We denote the set of halting firing sequences by T (NL).

Step Languages of the Petri nets

Let K = (V,NL, ζ), NL = (P, T, F,W,G,M0), be a labelled Petri net, where

• V is an alphabet.

• NL = (P, T, F,W,G,M0) is a Petri net.

• ζ : 2T/{∅} → V ∪ {λ} defines the symbol-wise labelling for every step. A step

U ∈ 2T/{∅} is called λ-step, if ζ(U) = λ.
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To associate an SN P system language with the corresponding Petri net language

we require that the sequence of applied rules corresponds to a step occurrence se-

quence of the Petri net.

Therefore as a correspondence we choose a weak coding (any transition is map-

ped to a symbol or the empty word) which agree with the classical variants of Petri

net languages. We consider only one type of acceptance from the theory of Petri net

languages: only those step occurrence sequences belonging to the languages which

transform the initial marking into one of the terminal markings of NL. As we are

considering only the step occurrence sequence leading to a terminal marking, we

say that the Petri net step language is of T-type.

Unlike associating a symbol to each transition of the Petri net as in [53], we

associate a symbol to each step U of NL. We define a labelling function ζ that maps

each step with a symbol of a finite alphabet V . We are assuming that ζ is a free

labelling function; i.e., step can be labelled with the empty symbol λ and several

transitions may have the same label.

The mapping ζ will be extended to step sequences and maximal step sequences.

Let ζ : S(NL) → V ∗. For a halting step sequence ρ = U1 . . . Un ∈ S(NL), ζ(ρ) is the

word ζ(U1) . . . ζ(Un). The step language Ls(NL) of NL is a set Ls(NL) = {ζ(ρ) | ρ ∈

S(NL)}. Similarly the maximal step languages are defined as Lm(NL) = {ζ(ρ) | ρ ∈

Sm(NL)}.

If firing sequences are considered then L(NL) = ζ(T (NL)) is the standard T-type

Petri net language of NL.

4.4 Translating SN P Systems into Petri Nets

In this section, we propose a formal method to translate standard spiking neural P

systems into Petri net models with step semantics.
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To model a standard SN P system Π = (O, σ1, σ2, σ3, . . . , σm, syn, i0) as a Petri net,

we introduce a different place pi with ni tokens for each neuron σi. The environment

of the SN P system is represented using place pm+1.

We add a synopsis (i0, m + 1) to syn to allow the transitions corresponding to

rules in output neuron to send tokens to the place corresponding to the environ-

ment. For each rule ij : E/ar → a; 0 ∈ Ri, we introduce a transition tij together with

an input place pi and an arc of W (pi, tij) = r. The output places of tij are all pk such

that (i, k) ∈ syn with W (tij, pk) = 1. The transitions corresponding to the forgetting

rules are sink transitions with no output places. The regular expression E associa-

ted with the rule ij : E/ar → a; 0 is translated into a guard function for tij that holds

true if M(pi) ∈ Ψ(L(E)). For simulating the rules are without delay, we only need

constant weighted arcs.

We add a synchronizing place pis to each pi that corresponds to a neuron having

more than one rule so that only one transition to fire from input place pi in each step.

Input and output arcs of weight one are connected between each tij and pis.

An augmented place pia is introduced for each neuron having a delayed rule

which is initially kept empty. To mimic the working of the spiking rule with delay

which is of the form E/ar → a; d with d ≥ 1, we introduce two transitions tij, tij′ and

a place for delay pijd which is initially empty.

We place an incoming arc from place pi to tij and an outgoing arc from tij to

pia with the incoming arc expression defined as if M(pi) − r > 0 then W (pi, tij) =

M(pi)−r else W (pi, tij) = 1. The weight of the outgoing arc from tij to pia is M(pi)−r.

The transition tij also has an incoming arc from place pis and a guard that returns

true only if M(pi) ∈ Ψ(L(E)). We also add an arc from tij to pijd of weight equal to

the delay t. The presence of token in the delay place pijd indicates that the neuron

σi is closed. So the markings of the places pi and pia represents the number of spikes

in the neuron σi when it is open and closed respectively. The number of tokens in

place pijd is decreased by one in each step by a sink transition tijd. The transition tijd
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Figure 4.1: Sub net for the rule ij : E/ar → a; d

is not required when delay d = 1. When the contents of the delay place becomes

one, the transition tij′ transfers back the contents of place pia to pi and a token to all

places pk such that (i, k) ∈ syn and to the place pis. At the same time the contents of

place pi are cleared by the transition tic. So even though the tokens are collected in

place pi, its contents will be cleared only after the delay. Thus the translation mimics

the working of the spiking rules with delay correctly.

The translation of the rule ij : E/ar → a; d into a Petri net is shown in Figure 4.1.

The label inside the place gives the initial marking of that place. Each transition

is labelled with the guard function associated with it. In the construction descri-

bed below, the SN P system is considered for the translation after adding a synopsis

(i0, m+ 1) to syn. This adds an arc from output neuron to the environment.

Definition 4.7 (SN P system to labelled Petri net). Let Π = (O, σ1, σ2, σ3, . . . , σm ,
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syn, i0) be an SN P system, then the corresponding labelled Petri net is a construct

K
df
= (V,NLΠ, ζ), NLΠ = (P, T, F,W,G,M0), where

1. V = {0, 1} is an alphabet.

2. The components of NLΠ are defined as

(a) The set of places is P
df
= {p1, p2, . . . , pm, pm+1} ∪ {pis | Ri has more than one

rule } ∪ {pia | σi has at least one rule with delay d ≥ 1} ∪ {pijd/ij is delayed

rule in σi} .

The initial marking of each place M0(pi)
df
= ni and M0(pis) = 1 for 1 ≤ i ≤

m, while all other places are initially kept empty.

(b) For each neuron σi and for each rule ij ∈ Ri, the set of transitionsT contains

a unique transition t′ = tij with the following connectivity.

i. if ij is a forgetting rule of the form E/ar → λ then t′ will be a sink

transition with W (pi, t
′) = r, W (t′, pis) = 1.

ii. if ij is a spiking rule of the form E/ar → a then we have

W (pi, t
′) = r, W (t′, pis) = 1 and

W (t′, pk) = 1 for every (i, k) ∈ syn.

iii. if ij is a spiking rule of the form E/ar → a; d with d ≥ 1 then add a

transition tij′ to T such that

W (pi, t
′)

df
= if M(pi)− r > 0 then M(pi)− r else 1,

W (t′, pia) = M(pi)− r,

W (pia, tij′) = M(pia), W (tij′, pi) = M(pia),

W (t′, pijd) = d, W (pijd, tij′) = 1 and W (tij′, pis) = 1

G(tij′)
df
= if (M(pijd) = 1) then return true else return false

if d > 1 then introduce a sink transition tijd to T with

W (pijd, tijd) = 1 and

G(tijd)
df
= if (M(pijd) > 1) then return true else return false
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iv. Set W (pis, t
′) = 1

G(t′)
df
= if (M(pi) ∈ Ψ(L(E))) then return true else return false

(c) The transition set T also contains a transition tic for each neuron σi with a

delayed rule having the following connectivity.

W (pi, tic) = 1

G(tic)
df
= if (M(pijd) = 1) then return true else return false

3. ζ : 2T/{∅} → V where ζ(U) = 1 if ∃t ∈ U such that W (t, pm+1) = 1, otherwise

ζ(U) = 0

To prove the equivalence of SN P system and the corresponding Petri net, we

show that the languages generated by both the systems is same. To capture a very

tight correspondence between the SN P system Π and the corresponding Petri net

NLΠ, we introduce a straightforward bijection between configurations of Π and the

sub markings of NLΠ, based on the correspondence between places and neurons.

Let C = 〈α1/d1, α2/d2, . . . , αm/dm〉 be a configuration of the SN P system Π.

The corresponding configuration mapped sub marking φ(C) of NLΠ is defined as

φ(C)
df
= 〈β1/f1, β2/f2, . . . , βm/fm〉 where for 1 ≤ i ≤ m,

φ(C)(βi)
df
=







M(pi) if di = 0

M(pia) if di ≥ 1

φ(C)(fi)
df
=







M(pijd) if di ≥ 1 and M(pijd) ≥ 1 for any j

0 otherwise

Similarly, for any vector rule v = 〈1j1, 2j2, . . . ,mjm〉 of Π enabled at configuration C ,

we define an enabled maximal step ξ(v) of transitions of NLΠ such that ξ(v)
df
= {tiji |

v(i) = iji with ji ≥ 1, 1 ≤ i ≤ m} ∪ {tijid | v(i) = iji with ji = 0 and di ≥ 2, 1 ≤

i ≤ m} ∪ {t′iji, tic | v(i) = is, 1 ≤ i ≤ m} . It is clear that φ is a bijection from the
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configurations of Π to the configuration mapped sub markings of NLΠ, and that ξ is

a bijection from vector rules of Π to enabled maximal steps of NLΠ.

We now can formulate a fundamental property concerning the relationship

between the dynamics of the SN P system Π and that of the corresponding Petri

net NLΠ:

C
v

=⇒C′ if and only if φ(C)[ξ(v)〉mφ(C′).

By the construction of Petri net, the initial configuration ofΠ corresponds through

φ to the initial configuration mapped sub marking of NLΠ. It can be observed that

the structure of neurons in Π is used in the definitions of the structure of the net

NLΠ (i.e., in the definitions of places, transitions, the weight function, and the guard

function). Let C be a configuration of Π and there is a vector rule v enabled at C rea-

ching a configuration C′. As there is a mapping between configurations and sub

markings, φ(C) is the marking of net NLΠ corresponding to the configuration C of Π.

For locally sequential and globally maximal firing semantics of SN P system, there

is a synchronizing place pis for each place pi, 1 ≤ i ≤ m to allow at most one tran-

sition (that too only one occurrence) to fire from pi. There is a one-to-one mapping

between the vector rule in the SN P system and maximal step in the corresponding

Petri net. So there exists a maximal step ξ(v) enabled at the sub marking φ(C). After

the execution of [ξ(v)〉m, the system reaches the configuration φ(C′). We can prove

only if part in the similar way.

We now extend the statement for sequences of transitions and sequences of

steps.

γ = C0
v1⇒ C1

v2⇒ . . .
vk⇒ Ck is an halting computation of Π if and only if ℑ(γ) =

φ(C0)[ξ(v1)〉mφ(C1)[ξ(v2)〉m . . . [ξ(vk)〉mφ(Ck) is the halting maximal step sequence of

NLΠ.
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So the evolution of the Petri netNLΠ is same as the evolution of the SN P system

Π. That means γ ∈ COM(Π) iff ℑ(γ) ∈ Sm(NLΠ).

Let Ci−1
vi⇒ Ci is the ith step of γ and if bin(vi) = 1. By the definition of bin,

bin(vi) = 1 iff vi(i0) is a non delayed spiking rule with rhs(vi(i0)) = 1 or vi(i0) = is.

From the construction of Petri net and the definition of ξ(vi), we observe that the

step ξ(vi) contains a transitions t with W (t, pm+1) = 1, which implies that ζ(ξ(vi)) =

1. Similarly we can prove that bin(v i) = 0 iff ζ(ξ(vi)) = 0. We extend this to the words

generated by both systems. If w = bin(γ) ∈ {0, 1}∗ iff w = ζ(ℑ(γ)).

From the above statement, we prove that L(Π) = Lm(NLΠ).

4.4.1 The Properties of SN P Systems Derived from Petri Nets

Many useful behavioural properties such as reachability, boundedness, liveness of

Petri nets have been investigated. We also introduce these properties for SN P sys-

tems.

For a SN P system, we define structural analysis which can identify properties that

are conserved during execution of the modelled system. It may provide insights to

the system. Such properties include the following:

1. Boundedness: An SN P system is said to be k-bounded or simply bounded if

the number of spikes in each neuron for every reachable configuration will not

exceed a finite number k. It is checking that there is no infinite accumulation

of spikes in a particular neuron.

2. T-Invariants: Identifying the sequence of vector rules that have to fire from

the some initial configuration to return the SN P system to that configuration.

T-invariants indicate the presence of cycles that are in a state of continuous

operation.
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3. Reachability: Deciding whether a certain configuration (state) is reachable

from another configuration. This type of analysis can be used to determine

whether certain outcomes are possible, given a modelled SN P system and an

initial configuration (initial state), or to determine whether certain configura-

tions are reachable when specific rules are inhibited.

4. Terminating: The sequences of transitions between configurations of a given

SN P system is finite, i.e., the computation of the SN P system always halts.

5. Deadlock-free: Each reachable configuration enables a next transition.

6. Liveness: It is deadlock-free and there is a sequence of enabled vector rules.

Theorem 4.1. If the Petri net for a given SN P system Π is terminating, then the SN P

system Π is terminating.

Proof. If the SN P system is not terminating, according to the definition of termina-

tion for SN P systems, there exists an infinite sequence of transitions. When the SN P

system is encoded by the Petri net, there also exists an infinite step sequence. Every

transition is one-to-one mapped to a step in the Petri net, so the sequence of steps

in the Petri net is not finite. Thus, this Petri net is not terminating.

Theorem 4.2. If the Petri net for a given SN P system Π is deadlock-free, then the SN

P system Π is deadlock-free.

Theorem 4.3. If the Petri net for a given SN P system Π has liveness, then the SN P

system Π has liveness.

Theorem 4.4. If the Petri net for a given SN P system Π is bounded, then the SN P

system Π is bounded.

Proof. The proofs of Theorem 4.2, Theorem 4.3, and Theorem 4.4 are the same as

for Theorem 4.1.
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4.5 Some Examples

Example 4.1.

First we consider an example of SN P system without delay. As all rules are ha-

ving no delay, we represent the configuration of an SN P system without delay as

〈α1, α2, . . . , αm〉 where neuron σi contains αi ≥ 0 spikes, for i = 1, 2, 3, . . . , m. Fi-

gure 4.2(a) represents the initial configuration of the SN P system Π2. We have three

neurons, labelled with 1, 2, 3, with neuron σ3 being the output one. The neurons

are represented by nodes of a directed graph whose arrows represent the synapses;

an arrow also exits from the output neuron, pointing to the environment; in each

neuron we specify the rules which are labelled and the spikes present in the initial

configuration. The rule 11 : a2/a → a in σ1 fires only if σ1 contains two spikes; one

spike is consumed, the other remains available for the next step. The rule 12 : a2 → a

also fires only if it contains two spikes; both are consumed. So in σ1, there is a non-

determinism between its two rules. Neuron σ2 is having only one rule, and neuron

σ3 is having one firing and one forgetting rule. The SN P system Π2 is formally repre-

sented as:

Π2 = ({a}, σ1, σ2, σ3, syn, 3), with

σ1 = (2, {a2/a → a, a2 → a}),

σ2 = (1, {a → a}),

σ3 = (1, {a → a, a2 → λ}),

syn = {(1,2),(2,1),(1,3),(2,3)}.

The initial configuration of the system is < 2, 1, 1 >. It works as follows. All

neurons can fire in the first step, with neuron σ1 choosing non-deterministically bet-

ween its two rules.

Output neuron σ3 sends its spike to the environment. If the neuron σ1 uses its
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Figure 4.2: A Spiking neural P system Π2 and its evolution

first rule, then both the neurons σ1 and σ2 exchange their spikes and send a spike to

the output neuron σ3 and reach the configuration < 2, 1, 2 >. As long as neuron σ1

uses the rules a2/a → a, the computation cycles in the same configuration: neurons

σ1 and σ2 exchange their spikes, while neuron σ3 forgets its two spikes.

However, at any moment, starting with the first step of the computation, σ1 can

choose to use the rule a2 → a. This means that the two spikes of σ1 are consumed

and a spike sent to σ2 and σ3; in this way, σ1 will have only one spike in the next step

and the system reaches the configuration < 1, 1, 2 >. Here the neuron σ1 cannot

use any of its rule, while neuron σ3 forgets its two spikes reaching the configuration

< 2, 0, 1 >. Using the rules in this way the system reaches the halting configuration

< 1, 0, 0 >.

The evolution of the system Π2 can be analyzed on a transition diagram as that

from Figure 4.2(b): because the system Π2 is finite, the number of configurations

reachable from the initial configuration is finite, too, hence, we can place them in

the nodes of a graph, and between two nodes/configurations we draw an arrow if

and only if a direct transition is possible between them. In Figure 4.2(b) we have also
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indicated the rules used in each neuron, with the following conventions: ij denotes

the jth rule in neuron σi, with 31 being written in italics, in order to indicate that a

spike is sent out of the system at that step; when a neuron σi, i = 1, 2, 3 uses no rule,

we have written i0.

The transition diagram of a finite SN P system can be interpreted as the repre-

sentation of a non-deterministic finite automaton, with C0 being the initial state,

the halting configurations being final states, and each arrow being marked with 0 if

in that transition the output neuron does not send a spike out, and with 1 if in the

respective transition the output neuron spikes; in this way, we can identify the lan-

guage generated by the system. In case of SN P system Π1, language generated is

L(Π2) = L(10+(11)∗111).
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Figure 4.3: Petri net NLΠ2
equivalent to the SN P system Π2

Figure 4.3(a) gives the Petri net representation of the SN P system Π2. p1, p2,

p3, and p4 are the places corresponding to neurons σ1, σ2, σ3, and environment of

Π2 respectively. We do not need any delay places here as all rules are without delay.

The place p2 do not require any synchronizing place as the corresponding neuron σ2
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has only one rule and synchronizing places are introduced for the other two places

p1 and p3 with a token in each. The places p1, p2, and p3 are initially marked with

2, 1, and 1 token respectively which is same as the initial numbers of spikes in their

corresponding neurons inΠ2. For each rule ij inΠ2, a transition tij is introduced with

an incoming arc from place pi and outgoing arcs to all places pk such that (i, k) ∈ syn.

The weights of the arcs are constants as in case of P/T nets and are not marking-

dependent. A guard function is associated with each transition tij corresponding to

the regular expression associated with ij. Submarking reachability tree of the places

p1, p2 and p3 is given in Figure 4.3(b), where arcs are labelled with the maximal steps.

We can observe from Figure 4.3(a) that t31 is the only transition having an arc to

the place p4, which corresponds to the environment of SN P system Π2. By using

labelling function ζ defined in the previous section, if we label the steps having t31

as 1 and other steps as 0, we get the step languages generated by the Petri net as

Lm(NLΠ2
) = L(10+(11)∗111)= L(Π2).

Simulation with PNetLab

The previous section provides the translation of SN P systems into Petri nets that can

be simulated using any tool that allows parallel execution of transitions. Here we

consider PNetLab to model NLΠ2
obtained in the previous section after translation.

In each step, the tool allows only one transition to fire from each input place so

synchronizing place is not required when the Petri net model is simulated through

PNetLab.

Here we make use of the built-in function ntoken(i) that returns the marking

of the place pi i.e. M(pi). To implement the regular expression E associated with

each rule, a deterministic finite automata for E is constructed and is translated into

a user defined guard function that enables the transition corresponding to the rule

when the number of tokens present in the input place pi is in Ψ(L(E)).
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(a)

(b)

Figure 4.4: PNetLab model for the Petri net NLΠ2
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A central reason for defining Petri net models for SN P systems is that there

are variety of analytical and verification techniques developed for Petri nets which

could be applicable to SN P systems. For the purpose of analysis of an SN P systems

we can also investigate the reachability graph of its Petri net as this is isomorphic

to the reachability graph of the SN P systems. Since reachability graph combine

step sequences and reachable states (markings), they are useful for the analysis and

verification of behavioural properties.

Figure 4.4(a) shows the PNetLab model for the Petri net in Figure 4.3(a). The

number of (1)’s inside the place indicates the marking of that place. Each transition

tij of NLΠ2
is named as tl − tij, where tl is the transition name given by the tool.

Each place pi is named as pi. Figure 4.4(a) also gives guard function for the transition

t1 − t11. If we consider the sub marking for the first three places p1, p2 and p3 (the

places corresponding to the neurons), the initial sub marking is < 2, 1, 1 > which

is similar as that of the SN P system in Figure 4.2. Figure 4.4(b) gives how to set

the simulation parameter and conflict managements, if more than one transition is

enabled from the same input place.

Figure A.1(a)−(h) in Appendix A gives the output of the step-by-step simulation

of the model. The small window displayed in the bottom right corner shows the

step number and the transitions (transition names are as given by the tool) fired

in the step. In the step 1, after the firing of the transitions t1 − t11, t3 − t21, t4 − t31

(corresponding to rules 11, 21, 31 of Π2), the system reaches the same sub marking <

2, 1, 2 > (shown in Figure A.1(a) of Appendix A). It stays in the same marking as long

as the step t1− t11, t3− t21, t5− t32 is fired. When the system chooses the transition

t2 − t12 instead of t1 − t11 in the step 2, it reaches the configuration < 1, 1, 2 > (see

in Figure A.1(b)). Figure A.1(c)− (h) gives remaining steps of the execution.

Figure 4.5 gives the report of markings during the simulation. The figure is the

modified part (some Italian words are translated to English) of the statomarche.xml

file which is generated by the tool during the simulation of the model and is found in
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Figure 4.5: Report of markings of NLΠ2
in the steps of simulation in PNetLab

the directory ∼/PNetLab 4.0/Engine/SimEngine/OutXML. Each tables gives the mar-

king of the places during each pass (or step). The number of {1}’s in front of the

place indicates the marking of the place.

We can observe from Figure 4.5 that the configurations reachable from the ini-

tial configuration of the SN P system Π2 are same as the markings reachable from

the initial marking in the corresponding Petri net model. So we conclude that the

Petri net model in Figure 4.4(a) accurately simulates the working of the SN P system

Π2.
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Figure 4.6: (a) An SN P system Π1 (b) Evolution of Π1

Example 4.2.

Here we simulate the SN P system with delay Π1 discussed in Example 2.2 of Chapter

2. The graphical representation of SN P system is reproduced in Figure 4.6 for the

readability.

Here we directly model the SN P system in PNetLab. Figure 4.7(a)− (d) shows

the PNetLab model for the SN P system Π1 and its execution in step-by-step mode.

Each transition is named as tl− tij, where tl is the transition name given by the tool

and tij corresponds to transition name tij given as per methodology discussed in the

previous section. p1, p2, p3 and p4 are the places corresponding to the neurons σ1, σ2,

σ3 and the environment respectively. The other places are named in a similar way as

the transitions. The symbol (1) in side the place indicates the presence of a token.

The transition t1− t11 corresponds to the spiking rule 11 : a2/a → a; 0 of the neuron

σ1. The regular expression associated with the rule 11 is implemented by associating

guard function ntoken(1) == 2 with t1 − t11, which allows the transition to fire only

if the place p1 has exactly two tokens. Since the neuron σ1 has an out going synapses
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to other two neurons, the transition t1 − t11 has an input arc of weight one from

place p1 and two outgoing arcs of unit weight to places p2 and p3. The forgetting rule

of σ1 is translated into a sink transition t2 − t12 with an incoming arc from p1. It is

associated with the guard ntoken(1) == 1. The other spiking rules without delay and

forgetting rules of σ2 and σ3 are translated in the similar way.

To implement the rule 22 : a → a; 1 of σ2 in PNetLab, two places p6 − p2a,

p8−p22d and two transitions t4−t22 and t5−t22′ are introduced withW (p2, t4−t22) =

1, representing the transfer of a spike from neuron σ2 and W (t4 − t22, p8 − 22d) =

1, describing the delay d = 1. The place p8 − p22d gives the time after which the

neuron σ2 becomes open. The transitions t4−t22 is associated with a guard function

ntoken(2) == 1, which fires when the place p2 has exactly one token, which conflicts

with the guard function of t3− t21. So at any time only one of the transitions t4− t22

or t3 − t21 will fire, which leads to a non-determinism. There is no arc between

t4− t22 and p6 − p2a as no tokens will be left in place p2 after firing of the transition

t4− t22. The delay place p8− p22d has an outgoing arc to t5− t22′, which when fires

transfers a token to places p1 and p3 (Since σ2 has an out going synapses to σ1 and

σ3). The other spiking rule with delay 32 : a → a; 1 of σ3 is also implemented in a

similar way.

Figure 4.8 gives the report of markings of the step-by-step simulation of the mo-

del in PNetLab. The figure is the part of the statomarche.xml file which is generated

during the simulation of the model and is found in the directory ∼/PNetLab 4.0/En-

gine/ SimEngine/OutXML. The markings of the places pi and pia corresponds to the

number of spikes in the neuron σi when it is open and closed respectively. The confi-

guration mapped sub marking of the Petri net NLΠ1
is 〈β1/d1, β2/d2, β3/d3〉 where βi

and di are calculated as per the procedure discussed in the previous section. So the

initial sub marking is 〈M(p1)/0,M(p2)/0, M(p3)/0〉= 〈2/0, 1/0, 3/0〉, which is similar

to the initial configuration of the SN P system Π1 in Figure 4.6. In the first pass (step),

t4 − t22 is chosen instead of t3 − t21, which corresponds to the rule 22 : a → a; 1.

142



Chapter 4. SN P Systems and Petri Nets

Figure 4.8: Report of markings of NLΠ1
in the steps of simulation in PNetLab

It transfers a token to the place p8 − p22d which represents that the second neuron

is closed and will open after one time unit. The contents of the place p6 − p2a gives

the number of spikes in the second neuron. So after firing of the step containing

transitions t1− t11, t4− t22, t7− t31, the next configuration mapped sub marking of

the Petri net NLΠ1
is 〈M(p1)/0,M(p6−p2a)/M(p8−p22d),M(p3)/0〉=〈1/0, 0/1, 1/0〉.

In the next step transitions t2− t12, t5− t22′, t6− t2c, t9− t32 (corresponding to rules

12, 2s, 32) are enabled. The transition t9− t32 corresponds to the delayed rule of σ3.

The transition t6 − t2c clears the contents of place p2. So upon firing this step, the

system reaches the next sub marking 〈1/0, 0/0, 0/1〉. The transitions enabled at this

marking are t2− t12, t10− t32′, t11− t3c reaching the final marking 〈0/0, 0/0, 0/0〉. We

can observe from the Figure 4.8 that the configurations reachable from the initial

configuration of the SN P system are same as the configuration mapped sub mar-

kings reachable in the corresponding Petri net model from the initial sub marking.
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So we conclude that the Petri net model in Figure 4.7(a) − (d) accurately simulates

the working of the SN P system Π1 in Figure 4.6.

4.6 Conclusion

In this chapter we demonstrated that Petri net is a formal model that gives a re-

presentation of an SN P system which is sufficiently rich to allow one to represent

properties and aspects of the system which may be relevant for the design and ve-

rification activities. Besides representing the state and the architectural aspects of

a system, Petri net typically comes equipped with an operational semantics which

can formally explain how the system behaves.

The chapter provides a systematic procedure to translate standard SN P sys-

tems into Petri nets that can be simulated using any tool that supports parallel exe-

cution of transitions and guard functions. Here we consider a tool called PNetLab to

simulate Petri net models.

In standard SN P systems the firing mode is the maximal strategy. In this mode,

in each transition only one rule is applied from each neuron that also at most once.

If in a configuration there are different sets of rules that can be applied in a neuron,

then one of them is non-deterministically chosen.

The sequential SN P systems and asynchronous SN P systems differ from the

standard SN P systems only in the mode of execution. So the procedure to model

these SN P systems is same as the procedure discussed in this chapter. But in order

to simulate the sequential SN P systems, we can consider the sequential mode of

execution for Petri nets. To simulate the asynchronous SN P systems, we can consi-

der the step execution semantics of the Petri nets.

We can also simulate extended SN P systems, which allows the rules are of the

form E/ar → aq; t, where r ≥ 1 and q ≥ 0. This means, if the neuron σi has number
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of spikes in Ψ(L(E)), then r spikes are consumed and q are produced and sent to the

neurons to which there exist synapses leaving the neuron where the rule is applied.

The rule is implemented in a similar way as the spiking rule of SN P system shown in

Figure 4.1 but unit arcs from transition tij′ to all pk with (i, k) ∈ syn (shown as dotted

arc in the figure) are replaced with an arc weight of q, which represents the transfer

q tokens.

Our intention is to go further on the line of this research to do thorough inves-

tigation of the Petri net model considered for translation, to relate this model to the

known variants of Petri nets, and to study what behavioural problems are decidable

in this framework.
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Chapter 5

SN P Systems with Anti-Spikes and

Petri Nets

Spiking neural P systems with anti-spikes works in the same way as standard SN

P system but deals with two types of objects called spikes (a) and anti-spikes (a).

There is also an highest priority annihilation rule (aa → λ) that is implicitly present

in each neuron of an SN PA system. So it is challenging to translate these systems

into Petri net models that can be simulated using a Petri net tool. In this chapter we

propose a methodology to model and simulate SN PA systems using Petri nets. This

enables us to verify system properties, system soundness and to simulate the dyna-

mic behaviour. We start with Section 5.2 by giving a brief introduction about SN PA

systems. A procedure to translate SN PA systems into an equivalent Petri net models

is provided in Section 5.3. In Section 5.4, the translation procedure is illustrated with

an example and analysis results for the SN PA system is studied by simulating and

analysing the obtained Petri net model in PNetLab.
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5.1 Introduction

In a standard SN P system there are only one type of objects called spikes which are

moved, created and destroyed but never modified into another form. SN P system

with anti spikes (shortly called SN PA system) introduced in [79], is a variant of an SN

P system consisting of two types of objects, spikes (denoted as a) and anti-spikes (de-

noted as a). The inhibitory impulses/spikes are represented using anti-spikes. The

anti-spikes behave in a similar way as spikes by participating in spiking and forget-

ting rules. They are produced from usual spikes by means of usual spiking rules; in

turn, rules consuming anti-spikes can produce spikes or anti-spikes (here we avoid

the rule anti-spike producing anti-spike). Each neuron in the system consists of an

implicit annihilation rule of the form aa → λ; if an anti-spike and a spike meet in a

given neuron, they annihilate each other. This rule has the highest priority and does

not consume any time. So at any instant of time, a neuron in an SN P system with

anti-spikes can have spikes or anti-spikes but not both.

The initial configuration of the system is described as the initial number of

spikes or anti-spikes present in each neuron. The SN PA system evolves in a syn-

chronous fashion, meaning that a global clock is assumed and in each time unit

all neurons work in parallel with each neuron which can use a rule should do it, but

using only one rule at a time (sequential locally). Using the rules, we can define tran-

sitions among configurations. The sequences of transitions among configurations,

starting from initial configuration is called a computation. A computation halts if

it reaches a configuration where no rule can be used. With any computation whe-

ther halting or not together with output produced in such case, yielding notions of

functionality and computational power of SN PA systems including various aspects

of computing.

It is extremely important to simulate these models to portray the system be-

haviour. Such models can shed insight into complex processes and suggest new
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directions for research. Scientists can study and analyze such models to make pre-

dictions about the behaviour of the system under different conditions and to discuss

novel relationships among the different components of a system. The ability to pre-

dict system behaviour with a model helps to evaluate model completeness as well

as improve our understanding of the system.

A modelling methodology that is especially tailored for representing and simu-

lating parallel dynamic systems is Petri nets. An advantage of Petri nets is that they

have a visual representation and simulation that facilitates user comprehension. Pe-

tri net tools enable users to verify system properties, verify system soundness, and

to simulate the dynamic behaviour.

In this chapter, we introduce the direct translation of SN PA systems into Pe-

tri nets models that can be simulated using existing Petri net tools. As the proce-

dure is direct, it involves less complexity in translation and also using the notions

and tools already developed for Petri nets, one can describe the internal process oc-

curring during a computation in the SN PA system in a graphical way. Perhaps the

greatest advantages of Petri nets are a solid mathematical foundation and the large

number of techniques being developed for their analysis. These include: reachabi-

lity analysis, invariants analysis (a technique using linear algebra), transformations

(including reductions) preserving desired properties, structure theory and formal

language theory.

5.2 SN P Systems with Anti-Spikes

An SN PA system works in a similar way as that of standard system without delay but

deals with two types of objects. The mathematical definition of the SN PA systems is

given in Section refsec:snpa. The rules of type E/br → b′, where b, b′ ∈ {a, a}, are the

spiking rules and they are used only if the neuron contains n bs such that bn ∈ L(E)

and n ≥ r. When neuron σi sends b′ (a spike/anti-spike), it is replicated in such a
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way that a spike/anti-spike is sent to all neurons σk such that (i, k) ∈ syn.

The rules of type bs → λ are the forgetting rules; s spikes/anti-spikes are simply

removed (“forgotten”) when applying the rule. Like in the case of spiking rules, the

left hand side of a forgetting rule must “cover” the contents of the neuron, that is,

as→ λ is applied only if the neuron contains exactly s spikes.

A spike/anti-spike emitted by neuron σi will pass immediately to all neurons

σk such that (i, k) ∈ syn. That means transmission of spikes/anti-spikes takes no

time, the spikes/anti-spikes will be available in neuron σk in the next step. There is

an additional fact that a and a cannot stay together, they annihilate each other. If a

neuron has either objects a or objects a, and further objects of either type (maybe

both) arrive from other neurons, such that we end with ar and as inside, then imme-

diately an annihilation rule aa → λ (which is implicit in each neuron), is applied in a

maximal manner, so that either ar−s or (a)s−r remain for the next step, provided that

r ≥ s or s ≥ r, respectively. This mutual annihilation of spikes and anti-spikes takes

no time and the annihilation rule has priority over spiking and forgetting rules, so

each neuron always contains either only spikes or anti-spikes. Like in [79], we avoid

using rules ac → a, but not the other three types, corresponding to the pairs (a, a),

(a, a), (a, a). If we have a rule E/br → b′ with L(E) = {br}, then we write it in the

simplified form br → b′.

Definition 5.1 (Configuration). The configuration of the system is described by C =

〈α1, α2, . . . , αm〉 where |αi| is the number of spikes/anti-spikes present in the neuron

σi. αi < 0 denotes that neuron σi is having |αi| anti-spikes and αi > 0 represents

that neuron σi is having αi spikes. With this notation, the initial configuration of the

system is described by C0 = 〈n1, n2, . . . , nm〉.

The SN PA system works in the same manner as the standard SN P system. A

global clock is assumed and in each time unit, each neuron which can use a rule

should do it (the system is synchronized), but the work of the system is sequential

locally: only (at most) one rule is used in each neuron except the annihilation rule
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which fires maximally with highest priority. If a neuron σi has more than one rule

enabled, then only one of them is chosen non-deterministically. Thus, the rules

are used in the sequential manner in each neuron, but neurons function in parallel

with each other. In each step, all neurons which can use a rule of any type, spiking

or forgetting, have to evolve, using a rule.

Definition 5.2 (Vector Rule). A vector rule of Π is a tuple v
df
= 〈1j1, 2j2, . . . ,mjm〉

where, for each neuron σi, iji is either i0 (when no rule is enabled) or an enabled rule

iji from Ri.

If a vector rule v is enabled at a configuration C=〈α1, α2, . . . , αm〉 then C can

evolve to C′ =〈α′
1, α

′
2, . . . , α

′
m〉, where

α′
i = αi − lhs(v(i)) +

∑

(k,i)∈syn rhs(v(k)) , 1 ≤ i ≤ m

where |lhs(v(i))| and |rhs(v(i))| gives the number of spikes/anti-spikes consumed

and sent by the rule v(i) respectively. lhs(v(i))
df
= −mi if v(i) consumes mi anti-spikes

and lhs(v(i))
df
= mi if v(i) consumes mi spikes. Similarly rhs(v(i))

df
= 1 if v(i) sends

a spike and rhs(v(i))
df
= −1 if v(i) sends an anti- spike. We can observe that annihi-

lation rule is automatically applied since the spikes are represented using positive

numbers and anti-spikes using negative numbers.

Definition 5.3 (Transition). Using the vector rule, we pass from one configuration of

the system to another configuration, such a step is called a transition. For two confi-

gurations C and C′ of Π we denote by C
v

=⇒ C ′, if there is a direct transition from C to

C′ on the vector rule v.

A computation of Π is a finite or infinite sequences of transitions starting from

the initial configuration, and every configuration appearing in such a sequence is

called reachable. A computation halts if it reaches a configuration where no rule

can be used. In the generative mode, one of the neuron is considered as the output

neuron and it sends output to the environment. The moments of time when a spike

is emitted by the output neuron are marked with 1, the moments of time when an
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anti-spike emitted is marked with 0 and no output moments are just ignored. This

binary sequence is called the spike train of the system - it might be infinite if the

computation does not stop. With halting configurations, we associate a language,

the binary strings describing the spike trains.

Let γ = C0
v1=⇒ C1

v2=⇒ . . .
vk=⇒ Ck be an halting computation (C0 is the initial

configuration, and Ci−1
vi=⇒ Ci is the ith transition of γ). Let us denote by bin(γ) the

string b1b2 . . . bk where bi ∈ {0, 1} and bi = 1 iff the output neuron of the system Π

sends a spike into the environment in the step i of γ (i.e. rhs(vi(i0)) = 1), bi = 0 iff

it sends an anti-spike (i.e. rhs(vi(i0)) = −1), and bi = λ if the step i generated no

output. We denote by B the binary alphabet {0, 1} and by COM(Π), the set of all

halting computations of Π. Moreover, we define the language generated by the SN

PA system Π by L(Π) = {bin(γ) | γ ∈ COM(Π)}.

5.3 Translating SN PA Systems into Petri Nets

In this section, we propose a formal method to translate SN PA systems into Petri

nets suitable for simulation using any Petri net tool that supports parallel execution

of transitions and guard functions. Here we consider same Petri net variant which

was defined in the previous chapter.

Three places are used to represent each neuron. The marking of the places p2i−1 and

p2i gives the number of spikes and anti-spikes present in the neuron σi respectively.

The place pis (it is same as place pis in the previous chapter) is added to allow at most

one transition to fire from each input place corresponding to σi. p2m+1 and p2m+2 are

the places corresponding to the environment and respectively gives the number of

spikes and anti-spikes sent out by the output neuron. Every spiking or forgetting

rule is one-to-one mapped to a transition in T . Regular expressions are translated

into guard functions which further control the firing of transitions. The annihilation

rule in each σi is implemented using two transitions tia and tib. A guard function is
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associated with tia so that it is enabled only if number of tokens in place p2i−1 (spikes)

is greater than or equal to the number of tokens in place p2i (anti-spikes). tia clears

the contents of place p2i and keeps M(p2i−1)−M(p2i) tokens in place p2i−1. Similarly

the guard function associated with tib is enabled only if number of tokens in place

p2i−1 is less the number of tokens in place p2i and keeps M(p2i)−M(p2i−1) tokens in

place p2i.

The annihilation rule is applicable in each neuron of SN PA system only after

the application of spiking rules (since forgetting rules does not add any spikes/anti-

spikes). To simulate this behaviour of an SN PA system, a place p2m+3 with no tokens

is introduced and an outgoing arc from each transition that corresponds to a spiking

rule is connected to the place p2m+3. The place p2m+3 gets a token for each transition

corresponding to the spiking rule fired in the step. All transitions that corresponds

to spiking rules are associated with a guard that enables the transition if place p2m+3

has no tokens. The transitions corresponding to the annihilation rules are applied

only if any transitions corresponding to spiking rules are applied in the previous

step. To implement this concept a guard function M(p2m+3) > 0 is added to each

transition corresponding to the annihilation rule. The place p2m+3 is also connected

to the transition t0 which fires with the annihilated transitions to clear the contents

of the place p2m+3 and thus allows spiking transitions to fire in the next step. In the

construction described below, the SN PA system is considered for the translation

after adding a synopsis (i0, m+ 1) to syn.

Definition 5.4 (SN PA system to labelled Petri net). Let Π=(O, σ1, σ2, σ3, . . . , σm , syn

, i0) be an SN PA system, then the corresponding labelled Petri net K
df
= (V,NLΠ, ζ),

NLΠ = (P, T, F,W,G,M0), where

1. V = {0, 1} is an alphabet.

2. The components of NLΠ are defined as

(a) P
df
= {p1, p2, . . . , p2m, p2m+1, p2m+2, p2m+3} is the set of places.
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(b) T
df
= T1 ∪ T2 ∪ . . . Tm ∪ {t0} where Ti is a set of transitions corresponding to

each neuron σi, 1 ≤ i ≤ m.

(c) for each rule ij ∈ Ri, Ti contains a distinct transition t = tij with the follo-

wing connectivity:

W (pis, t) = W (t, pis) = W (t, p2m+3) = 1

if ij is of the form E/ar → b where b = a or b = a or b = λ then

G(tij)
df
= if (M(p2i−1) ∈ Ψ(L(E)) and M(p2m+3) = 0) then return true else

return false

set W (p2i−1, t) = r

for each synopsis (i, k) ∈ syn do

if b = a then set W (t, p2k−1) = 1

if b = a then set W (t, p2k) = 1

end for

else if ij is of the form E/ar → b′ where b′ = a or b′ = λ then

G(tij)
df
= if (M(p2i) ∈ Ψ(L(E)) and M(p2m+3) = 0) then return true else re-

turn false

set W (p2i, t) = r

for each synopsis (i, k) ∈ syn do

if b′ = a then set W (t, p2k−1) = 1

end for

end if

end for

set W (p2m+3, t0) = M(p2m+3).

(d) For each annihilation rule that is internally present in neuron σi, Ti contains

two transitions tia and tib.

for i = 1 to m do

set W (p2i−1, tia) = M(p2i) , W (p2i, tia) = M(p2i),

W (pis, tia) = 1, and W (tia, pis) = 1

W (p2i−1, tib) = M(p2i−1), W (p2i, tib) = M(p2i−1),
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W (pis, tib) = 1, and W (tib, pis) = 1

G(tia)
df
= if (M(p2i−1) >= M(p2i) and M(p2m+3) > 0) then return true else

return false

G(tib)
df
= if (M(p2i) > M(p2i−1) and M(p2m+3) > 0) then return true else

return false

end for

The execution of tia consumesM(p2i) tokens from its input places and leaves

M(p2i−1)−M(p2i) tokens in place p2i−1. Similarly the execution of tib consumes

M(p2i−1) tokens from its input places and leaves M(p2i)−M(p2i−1) tokens

in place p2i.

(e) for i = 1 to m, set

M0(p2i−1)
df
= ni if ni > 0

M0(p2i)
df
= ni if ni < 0

M0(pis)
df
= 1

3. ζ : 2T/{∅} → V where ζ(U) = 1 if ∃t ∈ U such that W (t, p2m+1) = 1, ζ(U) = 0 if

∃t ∈ U such that W (t, p2m+2) = 1, and ζ(U) = λ otherwise.

In order to prove the equivalence between SN PA systems and Petri nets, we

equate the languages generated by both the systems.

To capture a very tight correspondence between the SN PA system Π and the

corresponding Petri netNLΠ, we introduce a straightforward bijection between confi-

gurations of Π and the configuration mapped sub markings of NLΠ, based on the

correspondence between places and neurons.

Let C = 〈α1, α2, . . . , αm〉 be a configuration of the SN PA system Π. The cor-

responding configuration mapped sub marking φ(C) of NLΠ is defined as φ(C)
df
=

〈β1, β2, . . . , βm〉, where for 1 ≤ i ≤ m,

φ(C)(βi)
df
= M(p2i−1)−M(p2i)

Similarly, for any vector rule v = 〈1j1, 2j2, . . . ,mjm〉 of Π enabled at configuration C,
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we define an enabled maximal step ξ(v) of transitions of NLΠ such that ξ(v)
df
= {tiji |

v(i) = iji with ji ≥ 1, 1 ≤ i ≤ m}. It is clear that φ is a bijection from the confi-

gurations of Π to the configuration mapped sub markings of NLΠ, and that ξ is a

bijection from vector rules of Π to enabled maximal steps of NLΠ.

We now can formulate a fundamental property concerning the relationship

between the dynamics of the SN PA system Π and that of the corresponding Petri

net:

C
v

=⇒C′ if and only if φ(C)[ξ(v)〉mM1[H〉mφ(C′).

where M1 is the intermediate configuration mapped sub marking of the Petri net

between φ(C) and φ(C′) and H is an intermediate step of transitions.

Since the initial configuration of Π corresponds through φ to the initial sub mar-

king of NLΠ, the above immediately implies that the computations of Π coincide

with the locally sequential and globally maximal concurrency semantics of the net

NLΠ.

It can be observed that the structure of neurons in Π is used in the definitions

of the structure of the net NLΠ (i.e., in the definitions of places, transitions and the

guard function). Let C be a configuration of Π and there is a vector rule v enabled

at C reaching a configuration C′. As there is a mapping between configuration and

markings, φ(C) is the marking of net NLΠ corresponding to the configuration C of Π.

There is a one-to-one mapping between the rules in the SN PA system and transi-

tions in net. So there exists a maximal step [ξ(v)〉 enabled at the marking φ(C). After

the execution of the step [ξ(v)〉 the Petri net reaches the marking M1 where the to-

kens in the place p2i−1 and p2i gives the number of spikes and anti-spikes present

in neuron σi before the application of annihilation rule. In order to implement the

annihilation rule, we introduce a maximal step H
df
= {tia | M(p2i−1) > M(p2i), 1 ≤

i ≤ m} ∪ {tib | M(p2i) > M(p2i−1), 1 ≤ i ≤ m} ∪ {t0} enabled at M1. After the execu-

tion of the step H , the system reaches the configuration φ(C′). So here we map each

vector rule of the SN PA system with two consecutive maximal steps. We can prove
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only if part in the similar way. So the evolution of the Petri net NLΠ is same as the

evolution of the SN PA system Π.

We now extend the statement for sequences of transitions and sequences of

steps.

γ = C0
v1⇒ C1

v2⇒ . . .
vk⇒ Ck is an halting computation of Π if and only if ℑ(γ) =

φ(C0)[ξ(v1)〉mM1[H1〉mφ(C1)[ξ(v2)〉mM2[H2〉m . . . [ξ(vk)〉mMk[Hk〉mφ(Ck) is the halting

maximal step sequence of NLΠ.

So the evolution of the Petri net NLΠ is same as the evolution of the SN PA

system Π. That means γ ∈ COM(Π) iff ℑ(γ) ∈ Sm(NLΠ).

Let Ci−1
vi⇒ Ci is the ith step of γ and if bin(vi) = 1. By the definition of bin,

bin(vi) = 1 iff vi(i0) is a spiking rule with rhs(vi(i0)) = 1. From the construction of

Petri net and the definition of ξ(vi) and Hi, we observe that the step ξ(vi) contains

a transitions t with W (t, p2m+1) = 1, which implies that ζ(ξ(vi)) = 1 and Hi contains

transitions with no outgoings arcs to places p2m+1 and p2m+2. So by the definition

of ζ , ζ(Hi) = λ. The output generated the net after firing of steps ξ(vi) and Hi is 1.

Similarly we can prove that bin(v i) = 0 iff ζ(ξ(vi))ζ(Hi) = 0λ = 0. We extend this to

the words generated by both systems. If w = bin(γ) ∈ {0, 1}∗ iff w = ζ(ℑ(γ)).

From the above statement, we prove that L(Π) = Lm(NLΠ).

5.4 An Example

Consider the graphical representation of an SN P system with anti-spikes in Figure 5.1(a).

It is formally denoted as

Π3=({a, a}, σ1, σ2, σ3, σ4, syn , 4), with

σ1 = (3, {a3/a → a, a3 → a}),

σ2 = (1, {a → a} ),

σ3 = (1, {a → a} ),
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σ4 = (1, {a → a , a → a} ),

syn={(1, 2), (2, 1), (1,4), (4,1), (1,3), (3,1)}.
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Figure 5.1: (a) An SN PA system Π3 (b) Evolution of Π3

The initial configuration of the system is < 3, 1, 1, 1 >. The evolution of the

system Π3 can be analysed on a transition diagram as that from Figure 5.1(b).

Neuron σ1 can behave non-deterministically choosing one of the two rules. As

long as neuron σ1 uses the rule a3/a → a, the computation cycles in the initial confi-

guration sending a spike to neurons σ2, σ3 and σ4; neuron σ4 uses its first rule and

sends an anti-spike to the environment and σ1. Neurons σ2 and σ3 use their rules

and send a spike to σ1. So neuron σ1 receives one anti-spike and two spikes (and

two spikes are already present in it), after using annihilation rule, it will have three

spikes.

If σ1 uses its second rule a3 → a, the three spikes are consumed and an anti-

spike is sent to other three neurons. So σ1 will have one spike and neurons σ2, σ3 and

σ4 will have one anti-spike each, reaching the configuration < 1,−1,−1,−1 >. In

the next step neurons σ1, σ2 and σ3 cannot fire and σ4 uses the rule a → a sending a

spike to the environment and σ1, reaching the configuration < 2,−1,−1, 0 > where

the system halts. As the output neuron σ4 is having a spike in its initial configuration

it outputs at least one anti-spike (0), even if the σ1 uses its second rule in the first
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step.

Similar to SN P system, the transition diagram of a finite SN PA system can be

interpreted as the representation of a non-deterministic finite automaton, with C0

being the initial state, the halting configurations being final states and each arrow

being marked with 0 if in that transition the output neuron sends an anti-spike and

with 1 if it sends a spike. In this way, we can identify the language generated by the

system. In the case of finite SN PA system Π3, the language generated is 0+1.

Figure 5.2 shows the Petri net model NLΠ3
for the SN PA system Π3 modelled

using PNetLab. Each transition tij is named as tl−tij, where tl is the transition name

given by the tool and tij is the transition name given as per methodology discussed

in this chapter. Each place pi is named as pi.

p1 and p2 are places corresponding to neuron σ1 for storing spikes and anti-

spikes respectively. Similarly places p(2i − 1) and p(2i) correspond to the neuron

σi, 1 ≤ i ≤ m. The contents of places p9 and p10 respectively shows number of spikes

and anti-spikes sent to the environment by the output neuron. The synchronizing

places pis, 1 ≤ i ≤ m are not required in PNetLab as the tool allows only one tran-

sition to fire from each input place. The symbol (1) inside the place indicates the

presence of a token in that place.

By the definition of the Petri net, the difference M(p1)−M(p2) gives the confi-

guration of the first neuron. If we consider the configuration mapped sub marking

i.e. M(p1)−M(p2) for the neuron σ1, M(p3)−M(p4) for neuron σ2, M(p5)−M(p6)

for neuron σ3 and M(p7) −M(p8) for neuron σ4, the initial marking is < 3, 1, 1, 1 >

which is similar to the initial configuration of the SN PA system in Figure 5.1. In the

step 1, after the firing of transitions t5−t21, t6−t31, t7−t11, t9−t41 (corresponding to

rules 21,31,11,41 of Π3), the system reaches the same sub marking < 3, 1, 1, 1 > with

M(p1) = 4 and M(p2) = 1, which gives respectively the number of spikes and anti-

spikes of neuron σ1. The place p11 receives 4 tokens since four spiking transitions

are fired in the step. The place p10 receives a token, which represents the emitting of
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Figure 5.3: Report of markings of NLΠ3
in the steps of simulation in PNetLab

an anti-spike by the output neuron (shown in pass.1 of Figure 5.3). As the number

of tokens in place p11 is greater than zero, the step 2 contains transitions correspon-

ding to annihilation rules t1 − t1a, t12 − t0 and the system will be in the same sub

marking but with M(p1) = 3 and M(p2) = 0 (shown in pass.2 of Figure 5.3). In the
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step 3, the transitions t5 − t21, t6 − t31, t8 − t12, t9 − t41 are fired and the system

reaches the sub marking < 1,−1,−1,−1 > with M(p1) = 2 and M(p2) = 1 (shown

in pass.3 of Figure 5.3). As the number of tokens in place p11 is 4, the transitions

t1 − t1a, t12 − t0, corresponding to the annihilation rules will be fired in the step 4

again reaching the same configuration as that of SN PA system i.e. < 1,−1,−1,−1 >

(shown in pass.4 of Figure 5.3). The transitions enabled at this marking is t10 − t42

followed by the transitions corresponding to annihilation rules t12− t0 reaching the

final marking < 2,−1,−1, 0 >. Figure B.1(a) − (f) in Appendix refapdx:b gives the

output of the step-by-step simulation of the model in PNetLab. We can observe from

the Figure 5.1 and Figure 5.3, that the configurations reachable from initial configu-

ration of the SN PA system are same as the sub markings reachable in the correspon-

ding Petri net model from the initial sub marking. So we conclude that the Petri net

model in Figure 5.2 accurately simulates the working of the SN PA system Π3.

5.5 Conclusion

SN PA systems are biologically inspired computing models that involve the use of

two types of objects called spikes and anti-spikes and thus model the systems wor-

king with binary data in a very natural way. A formalism to study these models and

validating them is needed. The Petri net tool called PNetLab allows the parallel exe-

cution of transitions. It enables to model the globally parallel firing semantics of all

SN PA systems. They also allow the definition of functions on arcs and transitions.

With numerous functionalities available with PNetLab, we succeeded in modelling

the entire work of SN PA systems. At present the algorithms only enable the simula-

tion of SN PA systems using P/T systems. It would be interesting to simulate SN PA

systems using coloured Petri nets where we can use different colours for spikes and

anti-spikes.
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Chapter 6

Some Applications of SN P Systems

In this chapter, the relation between SN P systems and Petri nets is emphasized by

focusing on modelling of producer/consumer paradigm and simplex stop-and-wait

protocol. Here, we present SN P systems for producer/consumer problem and sim-

plex stop-and-wait protocol. Then they are translated into Petri net models using

the procedure proposed in Chapter 4. It is observed that there is a direct correspon-

dence between the Petri net representation of the proposed models and standard

solutions based on Petri nets already present in the literature.

6.1 Introduction

Petri nets are widely used for formal specification, analysis and verification of net-

work protocols and distributed systems. The main reasons for this were that: (i) Petri

nets allow one to describe these systems in a very adequate way (in particular, by di-

rectly supporting the fundamental notions of concurrency and asynchrony which

are inherent to protocols and distributed systems); (ii) there exists a rich body of

models, verification techniques and computer-aided tools based on Petri nets; and

(iii) the visually appealing graphical interface makes Petri nets easy to understand
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and manipulate for a wide range of practitioners.

As SN P systems are recently introduced distributed computational models and

there is a similarity between the SN P systems and Petri nets, we therefore try to

use SN P systems to model some of the systems that were simulated using Petri

nets. We consider very simple systems like simplex stop-and-wait protocol with

lossless communication channel and producer/consumer problem with buffer ca-

pacity one. Then, we translate our models of SN P systems into equivalent Petri

nets with a corresponding semantics. The application of this construction to the

producer/consumer problem and stop-and-wait protocol returns Petri nets repre-

sentations which are same as the standard Petri nets solutions illustrated in [91] and

[98] respectively.

In [11], the relationship between P systems and Petri nets was investigated by

focusing on modelling producer/consumer problem with a buffer of capacity one

item and a parallel version of this system where the producer and the consumer

have direct access to two separate buffers, both of them having a capacity equal

to one. Here we emphasize the relation between SN P systems and Petri nets by

considering the problem of modelling producer/consumer problem with a buffer of

capacity one item.

Let us consider the producer-consumer problem, in which two processes share

a common buffer of capacity one item. One of them called a producer writes infor-

mation into the buffer, and the other one, called consumer, reads and deletes it out.

It is clear that, nothing can be written by the producer if the buffer is full. Similarly,

nothing can be read and deleted by consumer if buffer is empty.

The simplex stop-and-wait is the simplest connection-less protocol for com-

munication between two nodes. The system consists of a sender, receiver and com-

munication channel. The protocol uses flow control with a window size of one, with

the message sequence numbers simply alternate between 0 and 1.
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The sender simply sends message packets numberedPkt 0 orPkt 1; the content

of messages is not identified. These are acknowledged with Ack 0 or Ack 1 respec-

tively. It solves the problem of congestion, as only one frame is outstanding at any

time, frames cannot be lost due to congestion and the receiver will not be swam-

ped by the sender. It assumes an error free communication channel. Messages are

delivered immediately without loss. Here, messages are never lost and never have

to be timed out and resent. It is easy to see that if a frame or an acknowledgement

gets lost or damaged, a deadlock situation will occur where neither the sender nor

the receiver can advance; they will be thrown into infinite loops. This is suitable for

initial experimentation for representing it with SN P systems.
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Figure 6.1: SN P system for producer/consumer problem

6.2 SN P System for Producer/Consumer Paradigm

We consider the problem of modelling producer/consumer systems: a system consis-

ting of a producer and a consumer which synchronise through a buffer of capacity

one item. Specifically, the producer has two states: “ready to produce” and “ready to

deliver”; the consumer has two states, “ready to receive” and “ready to consume”;
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the buffer is represented using two states: “filled” denoting the filled buffer and

“free” denoting the free buffer. In state “ready to produce”, the producer executes

the operation “produce” and moves to state “ready to deliver”; in state “ready to

deliver”, if the buffer is free, the producer executes the operation “deliver”, which

fills the buffer cell, and moves back to state “ready to produce”. Similarly, in state

“ready to receive”, if the buffer is full, the consumer executes the operation “receive”,

which empties the buffer, and moves to state “ready to consume”; in state “ready to

consume”, the consumer executes the operation “consume” and moves back to state

“ready to receive”.

The SN P system for the producer/consumer problem is described in Figure 6.1,

with six neurons. The neurons σ1 and σ2 respectively represent “ready to produce”

and “ready to deliver” states of the producer. Similarly neurons σ3 and σ4 represent

“free” and “filled” states of the buffer respectively. The spike in σ3 indicate that buf-

fer is initially free. The neurons σ5 and σ6 respectively denote “ready to receive” and

“ready to consume” states of the consumer. Initially neurons σ1, σ3 and σ5 have

spikes representing that producer is initially in “ready to produce” state, buffer is

“free” and consumer is in “ready to receive” state. The neurons σ1, σ3 and σ5 fire in

the first step. The firing of the rule a → a in σ1 represents the action “produce” and

the producer transit from the state “ready to produce” to “ready to deliver” by sen-

ding a spike to σ2. At the same time σ3 also sends a spike to σ2 indicating that buffer

is empty and σ5 sends spike to neuron σ6 that it is ready to receive. In the second

step, as the neuron σ2 has two spikes it fires its rule and sends spikes to neurons σ1

and σ4 representing the “delivery action”. The rule a2 → a will be fired if the neuron

σ2 has two spikes, that is if the producer produced an item and the buffer is empty.

After delivery the producer again comes to “ready to produce” state. The presence of

a spike in neuron σ4 indicates that buffer is full and fires using the rule a → a. In the

fourth step the consumer neuron σ6 has two spikes and fires a2 → a representing the

action “consume” and sends spike to neuron σ3 and σ5 making the buffer cell “free”

and consumer is back to “ready to receive” state and the cycle goes on.
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Figure 6.2: Petri net equivalent to SN P system in Figure 6.1

Petri net representation

We briefly recall the procedure to translate standard SN P system without delay

Π=(O, σ1, σ2, . . . , σm, syn, i0) into corresponding Petri net NLΠ
df
= (P, T, A,W,G,M0)

to Petri net (without labelling function). Every neuron in the SN P system is one-

to-one mapped to a place in Petri net. Every rule is one-to-one mapped to a tran-

sition. Moreover, let us suppose the rules are labelled in a one-to-one manner with

values in {1, 2, . . . , k}, for some k ≥ 1. Then the corresponding transition set T =

{t1, t2, . . . , tk}. Regular expressions are translated into guard functions that further

control the transitions. The bindings of transitions are found by matching incoming

arc expressions with tokens marking input places and checking guard satisfaction.

To describe locally sequential semantics of the SN P system, a synchronizing place

is added to each place to allow at most one transition (one rule) to fire from each

input place. Note that synchronizing place is not required during translation if the

neuron is either having only one rule or no rule.
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Figure 6.3: Reduced Petri net for producer/consumer problem

To capture the very tight correspondence between the SN P system without de-

lay Π and Petri nets NLΠ, we introduced a straight forward bijection between confi-

gurations of Π and markings of NLΠ, based on the correspondence between places

and neurons.

Using the above procedure, the SN P system for producer/consumer problem

is translated into Petri net shown in Figure 6.2. The rules in neurons are one-to-

one mapped to transitions and the corresponding transition set in the Petri net is

T = {t1, t2, . . . , t6}. Each rule i : ar → a with r ≥ 1 of neuron σi is mapped to a

transition ti with an incoming arc of weight r from the place pi and outgoing arcs

(ti, pj) of unit weight, where (i, j) ∈ syn and 1 ≤ j ≤ m. The transition ti is assigned

with a guard defined as G(ti)
df
= if (M(pi) = r) then return true else return false

(marking M(pi) gives the number of tokens in place pi). As each neuron is having

only one rule, there is only one outgoing arc from each place. We observe that for

each place in the Petri net, the maximum number of tokens that can reside in the

place is equal to the weight of its outgoing arc which in turn equal to the number of

tokens needed in that place to enable its outgoing transition. So we can eliminate

all the guard functions from the Petri net.
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It is very important to develop methods of transformations which allow hie-

rarchical or stepwise reductions and preserve the system properties to be analysed.

In the literature, there are many reduction transformations in terms of places and

transitions. Different approaches are discussed in [63, 65, 76, 97], where places and

transitions are merged. Transition fusion is the most natural way to combine two or

more transitions. To obtain the reduced equivalent Petri net, we here merge pair of

transitions into a single transition.

In Figure 6.2, we observe that the firing of the transition t2 requires two tokens

in place p2, one through t1 and the other through t3. The transition t3 simply places

a token from place p3 into p2. So the transition t3 can be merged with t2 by adding an

input arc from place p3 to t2, removing the arc from t3 to p2 and replacing W (p2, t2) =

2 with W (p2, t2) = 1. Similarly the transition t4 is merged with t6. Hence, the Petri net

is transformed into a new equivalent Petri net shown in Figure 6.3, which is same as

the Petri net model of the producer/consumer system given in [91]. In other words,

we observe a “direct” correspondence between the SN P system representation and

the Petri net representation.

6.3 SN P System for Simplex Stop-and-Wait Protocol

We consider the problem of modelling simplex stop-and-wait protocol system. The

stop and wait protocol is very easy to implement and runs very quickly and effi-

ciently.

Specifically, the sender has two states: “wait Ack 0 (wait for acknowledgement

of packet 0)” and “wait Ack 1”. The receiver also has two states: “wait Pkt 0 (wait

for packet 0)” and “wait Pkt 1”. The channel has four states: “has Pkt 0”, “has Ack

0”, “has Pkt 1”, “has Ack 1”. In state “wait Ack 0”, if the buffer “has ack 0”, the sender

executes the operation “send packet 1” and moves to state “wait Ack 1”; In state “wait

Ack 1”, if the buffer “has Ack 1”, the sender executes the operation “send packet 0”
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Figure 6.4: SN P system for simplex stop-and-wait protocol

and moves to state “wait Ack 0”. Similarly, the receiver is in state “wait Pkt 0” and if

the buffer “has Pkt 0”, the receiver executes the operation “send Ack 0”, and moves

to state “wait Pkt 1”; In state “wait Pkt 1” and if the buffer “has Pkt 1”, the receiver

executes the operation “send Ack 1”, and moves to state “wait Pkt 0”.

In order to model this simplex stop-and-wait protocol with lossless communi-

cation channel, we consider an SN P system in Figure 6.4 with 8 neurons labelled

in a one-to-one manner with values in σ1 to σ8. The neurons σ1 and σ2 respectively

represent “wait Ack 0”, “wait Ack 1” states of the sender. Similarly neurons σ7 and σ8

represent “wait Pkt 0” and “wait Pkt 1” states of the receiver respectively. The neu-

rons σ3, σ4, σ5 and σ6 respectively represent the “has Pkt 0”, “has Ack 0”, “has Pkt 1”

and “has Ack 1” states of the channel.

Initially neurons σ1, σ3, σ8 have one spike each representing that sender is ini-

tially in “wait Ack 0” state, receiver is in “wait Pkt 0” state and channel “has Pkt 0”.

The neuron σ3 fires in the first step using the rule a → a and sends a spike to σ8 re-

presenting the action “deliver Pkt 0”. In the next step σ8 is having its required two

170



Chapter 6. Some Applications of SN P Systems

 

p
1

p
6

p
5

p
4

p
3

p
2

2

2

t1

t2

t6

t5

t4 t3

Sender Channel Receiver

wait Ack 0

wait Pkt 0

wait Pkt 1

wait Ack 1

Pkt 0

Pkt 1

Ack 1

Ack 0

2

2

p
8

p
7

t7

t8

Figure 6.5: Petri net equivalent to SN P system in Figure 6.4

neurons, fires using its rule a2 → a representing the action “send Ack 0” and sends

one spike each to neurons σ4 and σ7 indicating that channel “has Ack 0” and recei-

ver moves to the state “wait Pkt 1". In the third step the neuron σ4 fires and sends

its spike to neuron σ1 representing the delivery action of the acknowledgement for

packet 0. As neuron σ1 has two spikes presenting that it has received the acknowled-

gement, it fires using the rule a2 → awhich represents the “send packet 1” operation.

σ1 sends one spike each to neurons σ2 and σ5. A spike in σ2 indicates that sender is

in “wait Ack 1” state and the channel “has Pkt 1”. The systems transmits the packet

1 in a similar way as the packet 0 and the cycle goes on.

Now let us consider the Petri net model of the simplex stop-and-wait protocol

system given in [98] and it is reported in Figure 6.6. If we construct equivalent Petri

net for the SN P system of Figure 6.4 using the procedure discussed in Chapter 4, we

get a Petri net of Figure 6.5 which can be transformed to Petri net of Figure 6.6 by

merging t4 with t1, t6 with t2, t5 with t7 and t3 with t8 in a similar way as we have done
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Figure 6.6: Reduced Petri net for simplex stop-and-wait protocol

in the case of producer/consumer problem.

6.4 Conclusion

As a part of building bridge between SN P systems and Petri nets, we try to model

some systems using SN P systems that were modelled using Petri nets. We have

constructed an SN P system for producer/consumer paradigm and simplex stop-

and-wait protocol. Using the procedure described in this thesis, these systems are

translated into equivalent Petri net with a corresponding semantics. We have obser-

ved that the solutions based on SN P systems proposed here are equivalent to the

standard Petri nets representations.
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Conclusions and Future Work

Though spiking neural P systems is a new field of research motivated by the concept

of spiking neurons, a lot of work has been done in this area from mathematical point

of view. The systematic definition of SN P systems made them not only a robust,

executable specification but also constitute the basic and essential starting point for

deploying various methods and techniques to improve, formally verify or analyse

these systems. In this work we concentrate on the way to simulate and study the

behavioural properties of different variants of SN P systems.

Petri nets are one of the most widely used models of concurrency, which has

attracted, since its introduction, the interest of both theoreticians and practitioners.

Along the years Petri nets have been equipped with satisfactory semantics, justifying

their intrinsically concurrent nature and which have served as basis for the develop-

ment of a variety of modelling and verification techniques. We showed how the use

of Petri nets for formal verification and analysis enrich our knowledge about the SN

P systems. We now summarize the results presented in this thesis and describe some

future work in this area.
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We stated a series of investigations about spiking neural P system with anti-

spikes. We studied the computational power of SN PA systems as language genera-

tors. Since they work with two objects (the spike and the anti spike), thus, provide

the possibility of representing the generated strings in such a way that the non-firing

steps of the output neuron are ignored, the firing of a spike generates the symbol 1,

and the firing of an anti-spike generates the second symbol of the binary alphabet.

The families of finite binary languages and regular binary languages are characteri-

zed. Furthermore, a characterization of recursively enumerable languages is given

by using the SN PA systems. We compared the generative power of SN PA systems

with that of SN P systems, demonstrating the increase of power obtained by the pos-

sibility of using anti-spikes. Spiking neural P systems with anti-spikes are also used

as transducers. We gave an improved result of solving satisfiability problem in non-

deterministic way using SN PA systems. We also showed that arithmetic operations

can be performed on negative numbers by using SN PA systems.

In SN PA systems, if we label the non-firing steps of the output neuron also,

we can get a spike train over a three letter alphabet: no output, producing spikes,

and producing anti-spikes, respectively. This can be an interesting way to produce

languages over three letters. It is worth investigating the languages generated over

other alphabets with extended rules of the form E/br → b′q, where b, b′ ∈ {a, a}.

Here we considered Petri net as a tool to simulate and analyse some variants

of SN P systems. We proposed a generalized procedure to translate standard SN P

systems, extended SN P systems and SN P systems with anti-spikes into Petri net

models. To compare SN P systems to the corresponding Petri nets, we related the

languages generated by the systems. The procedure is illustrated with a series of

examples.

We believe that the further use of a Petri net simulator would provide a very

useful tool for checking the effectiveness of SN P systems and for returning mea-

ningful information about its behavioural properties. Once the SN P systems have
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been specified using Petri net formalism, certain tools can be used to study the pro-

perties. We propose the use of PNetLab - a Petri net tool for simulating the system

in step-by-step mode.

Since PNetLab uses PNML interchange format to store the Petri net models, it

would be interesting to use other tools on these Petri net models to study the beha-

viour properties of SN P systems.

Asynchronous and sequential SN P systems differ from extended SN P systems

only in the mode of operation (i.e. operating in asynchronous or sequential modes).

So we can use the same procedure to translate these systems into Petri net models.

The obtained Petri nets models are then executed in sequential or asynchronous

mode in order to study the behaviour of sequential or asynchronous SN P systems.

Nevertheless, there are classes of SN P systems whose translations is yet to be in-

vestigated: SN P systems working in exhaustive mode, SN P systems with astrocyte

like control, and SN P system with symport and antiport etc. These represent open

problems which will be addressed by future research.

We also emphasized the relationship between spiking neural P systems and Pe-

tri nets by constructing SN P systems for simplex stop-and-wait protocol and produ-

cer/consumer paradigm. They are translated into equivalent Petri net models, which

are observed as standard solutions based on Petri nets already present in the litera-

ture. As a part of research work one can try to simulate producer/consumer problem

with buffer capacity more than one using SN P system. Similarly it can be investiga-

ted whether other network protocols can be simulated by SN P systems.

SN P systems contribute consistently to building a mature research area of mem-

brane computing having strong links with computational models like formal verifi-

cation and analysis. Hence, it is in our intentions to strongly develop this topic and

motivate further cooperation between the areas of membrane computing and Petri

nets.
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[35] Gh. Păun and G. Rozenberg. A guide to membrane computing. Theoretical

Computer Science, 287(1):73–100, 2002.
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[42] H. J. Hoogeboom, Gh. Păun, G. Rozenberg, and A. Salomaa, editors. Membrane

Computing. 7th International Workshop, WMC 2006, Leiden, The Netherlands,

July 17-21, 2006, Revised Selected and Invited Papers, volume 4361 of Lecture

Notes in Computer Science. Springer, 2006.

[43] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation to Auto-

mata. Addison-Wesley, 1969.

[44] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[45] O. H. Ibarra, M. J. Pérez-Jiménez, and T. Yokomori. On spiking neural P systems.

Natural Computing, 9(2):475–491, 2010.
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solutions to SAT and subset-sum by spiking neural P systems. Natural Compu-

ting, 8(4):681–702, 2009.

[67] W. Maass. Computing with spikes. Special Issue on Foundations of Information

Processing of TELEMATIK, 8(1):39–43, 2002.

[68] L. F. Macías-Ramos, I. Pérez-Hurtado, M. García-Quismondo, L. Valencia-

Cabrera, M. J. Pérez-Jiménez, and A. Riscos-Núñez. A P-Lingua based simulator

for spiking neural P systems. In Gheorghe et al. [38], pages 257–281.

[69] M. Malita. Membrane computing in Prolog. In Pre-Proceedings of the Multiset

Workshop on Multiset Processing, Curtea de Arges, Romania, CDMTCS, Univer-

sity of Auckland, pages 159–176, 21-25, August 2000.

[70] M. Margenstern and Y. Rogozhin, editors. P Systems with Membrane Creation:

Universality and Efficiency, volume 2055 of Lecture Notes in Computer Science.

Springer, 2001.
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Gh. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing - 11th

International Conference, CMC 2010, Jena, Germany, August 24-27, 2010, Revi-

sed Selected Papers, volume 6501 of Lecture Notes in Computer Science, pages

377–391. Springer, 2011.

185





Appendix A

Step-by-Step Simulation of Petri Net

NLΠ2
in PNetLab

187



Appendix A. Step-by-Step Simulation of Petri Net NLΠ2
in PNetLab

(a
)

Si
m

u
la

ti
o

n
o

f
N
L
Π

2
in

P
N

et
L

ab
(S

te
p

1)

188



Appendix A. Step-by-Step Simulation of Petri Net NLΠ2
in PNetLab

(b
)

Si
m

u
la

ti
o

n
o

f
N
L
Π

2
in

P
N

et
L

ab
(S

te
p

2)

189



Appendix A. Step-by-Step Simulation of Petri Net NLΠ2
in PNetLab

(c
)

Si
m

u
la

ti
o

n
o

f
N
L
Π

2
in

P
N

et
L

ab
(S

te
p

3)

190



Appendix A. Step-by-Step Simulation of Petri Net NLΠ2
in PNetLab

(d
)

Si
m

u
la

ti
o

n
o

f
N
L
Π

2
in

P
N

et
L

ab
(S

te
p

4)

191



Appendix A. Step-by-Step Simulation of Petri Net NLΠ2
in PNetLab

(e
)

Si
m

u
la

ti
o

n
o

f
N
L
Π

2
in

P
N

et
L

ab
(S

te
p

5)

192



Appendix A. Step-by-Step Simulation of Petri Net NLΠ2
in PNetLab

(f
)

Si
m

u
la

ti
o

n
o

f
N
L
Π

2
in

P
N

et
L

ab
(S

te
p

6)

193



Appendix A. Step-by-Step Simulation of Petri Net NLΠ2
in PNetLab

(g
)

Si
m

u
la

ti
o

n
o

f
N
L
Π

2
in

P
N

et
L

ab
(S

te
p

7)

194



A
p

p
en

d
ix

A
.

S
tep

-b
y-S

tep
S

im
u

la
tio

n
o

f
P

etri
N

et
N
L

Π
2

in
P

N
etL

a
b

(h) Simulation of NLΠ2
in PNetLab (Step 8)

Figure A.1: Step-by-step simulation of NLΠ2
in PNetLab
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Figure B.1: Step-by-step simulation of NLΠ3
in PNetLab
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